Volume 51 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
CAI P Y,XU G N,KE Z J,et al. Distributed solar cell generation analysis and system optimization for near space vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2757-2766 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0652
Citation: CAI P Y,XU G N,KE Z J,et al. Distributed solar cell generation analysis and system optimization for near space vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2757-2766 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0652

Distributed solar cell generation analysis and system optimization for near space vehicles

doi: 10.13700/j.bh.1001-5965.2023.0652
Funds:

Strategic Priority Research Program of the China Academy of Sciences (XDA17020304)

More Information
  • Corresponding author: E-mail:xugn@aircas.ac.cn
  • Received Date: 11 Oct 2023
  • Accepted Date: 19 Jan 2024
  • Available Online: 23 Feb 2024
  • Publish Date: 08 Feb 2024
  • The form of energy for long-duration vehicles in near space generally adopts a photovoltaic power generation system, and the solar cells are laid on the upper surface of the vehicle. Because of the vehicle's shape and limitations, the solar cells are dispersed across curved surfaces with varying irradiance at different points. A distributed solar cell system, in which the curved array is separated into several solar cell subarrays and each subarray is individually controlled to realize the maximum power generation of the entire solar array, is typically used to make efficient use of the curved solar cell array. For a near-space vehicle, this work develops a distributed solar cell array power generation model and examines the law and impact of the power produced by solar cell subarrays with various parameters. A distributed solar cell maximum power tracking controller topology is proposed based on the above law. According to the simulation analysis, the topology reduces the rated power of the converter while ensuring the overall energy remains unchanged, which provides a new idea for the weight reduction of the power system of the near-space vehicle.

     

  • loading
  • [1]
    ZHANG L C, ZHU W Y, DU H F, et al. Multidisciplinary design of high altitude airship based on solar energy optimization[J]. Aerospace Science and Technology, 2021, 110: 106440. doi: 10.1016/j.ast.2020.106440
    [2]
    RAMESH S S, LIM K M, LEE H P, et al. Reduced-order modeling of stratospheric winds and its application in high-altitude balloon trajectory simulations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(6): 1753-1766. doi: 10.1175/JAMC-D-16-0294.1
    [3]
    高阳, 徐国宁, 王生, 等. 平流层飞艇能源系统建模与小信号稳定性分析[J]. 太阳能学报, 2022, 43(8): 50-57.

    GAO Y, XU G N, WANG S, et al. Modeling and small signal stability analysis of stratospheric airship energy system[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 50-57(in Chinese).
    [4]
    JIANG Y, LV M Y, WANG C Z, et al. Layout optimization of stratospheric balloon solar array based on energy production[J]. Energy, 2021, 229: 120636. doi: 10.1016/j.energy.2021.120636
    [5]
    ZHANG L C, LV M Y, ZHU W Y, et al. Mission-based multidisciplinary optimization of solar-powered hybrid airship[J]. Energy Conversion and Management, 2019, 185: 44-54. doi: 10.1016/j.enconman.2019.01.098
    [6]
    LI J, LV M Y, TAN D J, et al. Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied Thermal Engineering, 2016, 104: 743-750. doi: 10.1016/j.applthermaleng.2016.05.122
    [7]
    朱炳杰, 杨希祥, 麻震宇, 等. 平流层飞艇太阳电池系统产能分析[J]. 国防科技大学学报, 2019, 41(1): 13-18. doi: 10.11887/j.cn.201901003

    ZHU B J, YANG X X, MA Z Y, et al. Power analysis of stratospheric airship’s solar array system[J]. Journal of National University of Defense Technology, 2019, 41(1): 13-18(in Chinese). doi: 10.11887/j.cn.201901003
    [8]
    王旭巍, 李兆杰, 张衍垒, 等. 结合平流层飞艇姿态的太阳辐射强度分布[J]. 国防科技大学学报, 2022, 44(6): 30-37. doi: 10.11887/j.cn.202206005

    WANG X W, LI Z J, ZHANG Y L, et al. Solar radiation intensity distribution combined with stratospheric airship flying gesture[J]. Journal of National University of Defense Technology, 2022, 44(6): 30-37(in Chinese). doi: 10.11887/j.cn.202206005
    [9]
    JIANG Y, LV M Y, CHEN X Y, et al. An optimization approach for improving the solar array output power of stratospheric aerostat[J]. Aerospace Science and Technology, 2021, 118: 106916. doi: 10.1016/j.ast.2021.106916
    [10]
    刘乾石, 徐国宁, 李兆杰, 等. 不规则太阳电池临近空间发电模型构建与分析[J]. 太阳能学报, 2022, 43(7): 73-79.

    LIU Q S, XU G N, LI Z J, et al. Research and analysis of irregular solar cells power generation model in near space[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 73-79(in Chinese).
    [11]
    郑威, 宋琦, 李勇, 等. 平流层飞艇太阳电池阵发电功率计算及分析[J]. 宇航学报, 2010, 31(4): 1224-1230. doi: 10.3873/j.issn.1000-1328.2010.04.046

    ZHENG W, SONG Q, LI Y, et al. Computation and analysis of power generated by the solar cell array of a stratospheric airship[J]. Journal of Astronautics, 2010, 31(4): 1224-1230(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.04.046
    [12]
    ZHANG L C, LV M Y, MENG J H, et al. Optimization of solar-powered hybrid airship conceptual design[J]. Aerospace Science and Technology, 2017, 65: 54-61. doi: 10.1016/j.ast.2017.02.016
    [13]
    LV M Y, LI J, DU H F, et al. Solar array layout optimization for stratospheric airships using numerical method[J]. Energy Conversion and Management, 2017, 135: 160-169. doi: 10.1016/j.enconman.2016.12.080
    [14]
    YANG X X, LIU D N. Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable Energy, 2017, 113: 1070-1076. doi: 10.1016/j.renene.2017.06.077
    [15]
    JIANG Y, LV M Y, SUN K W. Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight[J]. Energy, 2022, 258: 124982. doi: 10.1016/j.energy.2022.124982
    [16]
    ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002
    [17]
    SONG K Y, LI Z J, ZHANG Y L, et al. Power generation calculation model and validation of solar array on stratospheric airships[J]. Energies, 2023, 16(20): 7106. doi: 10.3390/en16207106
    [18]
    杨威宇, 徐国宁, 李兆杰, 等. 太阳电池在临近空间发电影响因素研究[J]. 太阳能学报, 2021, 42(12): 476-485.

    YANG W Y, XU G N, LI Z J, et al. Influence factors of solar cell power generation in near space[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 476-485(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(376) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return