| Citation: | HOU Z Q,ZHAO J X,CHEN Y,et al. Cascaded object drift determination network for long-term visual tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2240-2252 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0504 |
Aiming at the problems of artificially selecting the threshold and poor determination performance in the existing object drift determination criteria, this paper proposes a cascaded object drift determination network with adaptive threshold selection. Firstly, through the cascade design of the two sub-networks, determine whether the tracking results drift. The results are then jointly determined by the proposed network using the static template, long-term template, and short-term template. A long-term and short-term template update strategy is then designed to guarantee the quality of the template and adapt it to the object’s changing appearance during the determination process. Finally, the proposed network is combined with the short-term tracker TransT and the global re-detection method GlobalTrack to build a long-term tracking algorithm TransT_LT. The proposed algorithm’s performance test on four datasets (UAV20L, LaSOT, VOT2018-LT, and VOT2020-LT) demonstrates that it performs better over the long term in tracking, particularly on the UAV20L dataset, where it outperforms the benchmark algorithm by 7.7% and 10.3%, respectively, in tracking success rate and accuracy. The determination speed of the proposed network is 100 frames per second, which has little effect on the speed of the long-term tracking algorithm.
| [1] |
李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. doi: 10.11834/jig.190372
LI X, ZHA Y F, ZHANG T Z, et al. Survey of visual object tracking algorithms based on deep learning[J]. Journal of Image and Graphics, 2019, 24(12): 2057-2080(in Chinese). doi: 10.11834/jig.190372
|
| [2] |
刘芳, 孙亚楠, 王洪娟, 等. 基于残差学习的自适应无人机目标跟踪算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(10): 1874-1882.
LIU F, SUN Y N, WANG H J, et al. Adaptive UAV target tracking algorithm based on residual learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1874-1882(in Chinese).
|
| [3] |
蒲磊, 冯新喜, 侯志强, 等. 基于级联注意力机制的孪生网络视觉跟踪算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(12): 2302-2310.
PU L, FENG X X, HOU Z Q, et al. Siamese network visual tracking algorithm based on cascaded attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2302-2310(in Chinese).
|
| [4] |
WANG X, TANG J, LUO B, et al. Tracking by joint local and global search: a target-aware attention-based approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6931-6945. doi: 10.1109/TNNLS.2021.3083933
|
| [5] |
DAI K N, ZHANG Y H, WANG D, et al. High-performance long-term tracking with meta-updater[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 6297-6306.
|
| [6] |
ZHAO H J, YAN B, WANG D, et al. Effective local and global search for fast long-term tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 460-474. doi: 10.1109/TPAMI.2022.3153645
|
| [7] |
GAO Z, ZHUANG Y, GU J J, et al. A joint local-global search mechanism for long-term tracking with dynamic memory network[J]. Expert Systems with Applications, 2023, 223: 119890. doi: 10.1016/j.eswa.2023.119890
|
| [8] |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2544-2550.
|
| [9] |
WANG M M, LIU Y, HUANG Z Y. Large margin object tracking with circulant feature maps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4800-4808.
|
| [10] |
JUNG I, SON J, BAEK M, et al. Real-time MDNet[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 83-98.
|
| [11] |
ZHANG Y, WANG D, WANG L, et al. Learning regression and verification networks for long-term visual tracking[EB/OL]. (2018-11-19)[2023-08-01]. http://arxiv.org/abs/1809.04320v1.
|
| [12] |
NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 4293-4302.
|
| [13] |
HOU Z Q, WANG Z, PU L, et al. Target drift discriminative network based on deep learning in visual tracking[J]. Journal of Electronic Imaging, 2022, 31: 043052.
|
| [14] |
CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 8126-8135.
|
| [15] |
HUANG L H, ZHAO X, HUANG K Q. GlobalTrack: a simple and strong baseline for long-term tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11037-11044. doi: 10.1609/aaai.v34i07.6758
|
| [16] |
MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 445-461.
|
| [17] |
FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5369-5378.
|
| [18] |
LUKEŽIČ A, ZAJC L Č, VOJÍŘ T, et al. Now you see me: evaluating performance in long-term visual tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 4991391.
|
| [19] |
KRISTAN M, LEONARDIS A, MATAS J, et al. The eighth visual object tracking VOT2020 challenge results[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 547-601.
|
| [20] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
|
| [21] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6230-6239.
|
| [22] |
NI J J, WU J H, TONG J, et al. GC-Net: global context network for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 190: 105121. doi: 10.1016/j.cmpb.2019.105121
|
| [23] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-08-01]. http://arxiv.org/abs/1409.1556.
|
| [24] |
DONG Q J, HE X D, GE H Y, et al. Improving model drift for robust object tracking[J]. Multimedia Tools and Applications, 2020, 79(35): 25801-25815.
|
| [25] |
WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. doi: 10.1109/TPAMI.2014.2388226
|
| [26] |
YAN B, ZHAO H J, WANG D, et al. ‘skimming-perusal’ tracking: a framework for real-time and robust long-term tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 2385-2393.
|
| [27] |
VOIGTLAENDER P, LUITEN J, TORR P H S, et al. Siam R-CNN: visual tracking by re-detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 6577-6587.
|
| [28] |
MA F, SHOU M Z, ZHU L C, et al. Unified Transformer tracker for object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 8771-8780.
|
| [29] |
FU Z H, LIU Q J, FU Z H, et al. STMTrack: template-free visual tracking with space-time memory networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13769-13778.
|
| [30] |
BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 6181-6190.
|
| [31] |
GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 9538-9547.
|
| [32] |
LI B, WU W, WANG Q, et al. Evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 16-20.
|
| [33] |
DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4655-4664.
|
| [34] |
WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 1571-1580.
|
| [35] |
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 4310-4318.
|
| [36] |
HARE S, GOLODETZ S, SAFFARI A, et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. doi: 10.1109/TPAMI.2015.2509974
|
| [37] |
DANELLJAN M, HÄGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575. doi: 10.1109/TPAMI.2016.2609928
|
| [38] |
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. doi: 10.1109/TPAMI.2011.239
|
| [39] |
YU L, QIAO B J, ZHANG H L, et al. LTST: long-term segmentation tracker with memory attention network[J]. Image and Vision Computing, 2022, 119: 104374. doi: 10.1016/j.imavis.2022.104374
|
| [40] |
SANG H, LI G, ZHAO Z. Multi-scale global retrieval and temporal-spatial consistency matching based long-term tracking network[J]. Chinese Journal of Electronics, 2022, 32: 1-11.
|
| [41] |
CHOI S, LEE J, LEE Y, et al. Robust long-term object tracking via improved discriminative model prediction[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, , 2020: 602-617.
|