Volume 51 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
ZHANG L,SHEN J Y,HU C L,et al. Learning Harris Hawks optimization algorithm with signal-to-noise ratio[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2360-2373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0433
Citation: ZHANG L,SHEN J Y,HU C L,et al. Learning Harris Hawks optimization algorithm with signal-to-noise ratio[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2360-2373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0433

Learning Harris Hawks optimization algorithm with signal-to-noise ratio

doi: 10.13700/j.bh.1001-5965.2023.0433
Funds:

National Natural Science Foundation of China (62272418, 62002046)

More Information
  • Corresponding author: E-mail:2078570674@qq.com
  • Received Date: 03 Jul 2023
  • Accepted Date: 27 Nov 2023
  • Available Online: 23 Feb 2024
  • Publish Date: 04 Feb 2024
  • Aiming at the problem of insufficient population learning and adaptability of the Harris hawks optimization (HHO) algorithm, this paper proposes a learning Harris hawks optimization based on the signal-to-noise ratio(SLHHO)algorithm. By using the signal-to-noise ratio as a metric to assess individual position information, the algorithm creates a coordinated learning strategy that can more realistically update the positions of individuals within the population. It then reworks the escape distance to enhance the algorithm’s capacity for adaptation and optimization seeking. With 12 benchmark functions as the standard, the proposed algorithm was tested for its performance with the variants of the Harris hawk algorithm and other algorithms, and compared and analyzed in the evaluation indexes such as time complexity, diversity, exploration and development, etc. The results show that SLHHO algorithm is highly competitive and feasible, and finally, its practicability is verified in the pressure vessel design problem.

     

  • loading
  • [1]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
    [2]
    DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. doi: 10.1109/MCI.2006.329691
    [3]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [4]
    MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [5]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [6]
    ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300. doi: 10.1016/j.engappai.2019.103300
    [7]
    XIE L, HAN T, ZHOU H, et al. Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 9210050. doi: 10.1155/2021/9210050
    [8]
    JIANG X Y, LI S. BAS: beetle antennae search algorithm for optimization problems[EB/OL]. (2017-10-30)[2023-02-01]. http://arxiv.org/abs/1710.10724.
    [9]
    HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028
    [10]
    JIAO S, CHONG G S, HUANG C C, et al. Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J]. Energy, 2020, 203: 117804. doi: 10.1016/j.energy.2020.117804
    [11]
    闫晓斌, 方洋旺, 彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(8): 2636-2645.

    YAN X B, FANG Y W, PENG W S. Multi-objective Harris hawk optimization algorithm based on adaptive Gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2636-2645(in Chinese).
    [12]
    ELGAMAL Z M, YASIN N B M, TUBISHAT M, et al. An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field[J]. IEEE Access, 2020, 8: 186638-186652. doi: 10.1109/ACCESS.2020.3029728
    [13]
    胡春安, 熊昱然. 多策略改进的混沌哈里斯鹰优化算法[J]. 计算机工程与科学, 2023, 45(9): 1648-1660. doi: 10.3969/j.issn.1007-130X.2023.09.014

    HU C A, XIONG Y R. A multi-strategy improved chaotic Harris hawk optimization algorithm[J]. Computer Engineering & Science, 2023, 45(9): 1648-1660(in Chinese). doi: 10.3969/j.issn.1007-130X.2023.09.014
    [14]
    LI C Y, LI J, CHEN H L, et al. Enhanced Harris hawks optimization with multi-strategy for global optimization tasks[J]. Expert Systems with Applications, 2021, 185: 115499. doi: 10.1016/j.eswa.2021.115499
    [15]
    李岩, 钱谦. 基于多种群与协同量子化的哈里斯鹰优化算法[J]. 控制与决策, 2024, 39(7): 2169-2176.

    LI Y, QIAN Q. Harris hawks optimization algorithm based on multigroup and collaborative quantization[J]. Control and Decision, 2024, 39(7): 2169-2176(in Chinese).
    [16]
    柴岩, 任生. 双向经验引导与极端个体调控的HHO算法[J]. 计算机科学与探索, 2023, 17(9): 2118-2136. doi: 10.3778/j.issn.1673-9418.2203134

    CHAI Y, REN S. HHO algorithm based on bidirectional experience guidance and extreme individual regulation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2118-2136(in Chinese). doi: 10.3778/j.issn.1673-9418.2203134
    [17]
    刘小龙, 梁彤缨. 基于方形邻域和随机数组的哈里斯鹰优化算法[J]. 控制与决策, 2022, 37(10): 2467-2476.

    LIU X L, LIANG T Y. Harris hawk optimization algorithm based on square neighborhood and random array[J]. Control and Decision, 2022, 37(10): 2467-2476(in Chinese).
    [18]
    展广涵, 王雨虹, 刘昊. 混合策略改进的哈里斯鹰优化算法及其应用[J]. 传感技术学报, 2022, 35(10): 1394-1403.

    ZHAN G H, WANG Y H, LIU H. Improved Harris hawks optimization algorithm with hybrid strategy and its application[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1394-1403(in Chinese).
    [19]
    赵峰, 徐丹华. 基于混沌扰动与柯西变异的HHO算法[J]. 安徽大学学报(自然科学版), 2023, 47(4): 25-34.

    ZHAO F, XU D H. HHO algorithm based on chaotic perturbation and Cauchy mutation[J]. Journal of Anhui University (Natural Science Edition), 2023, 47(4): 25-34(in Chinese).
    [20]
    贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104-116. doi: 10.11992/tis.202108031

    JIA H M, LIU Q X, LIU Y X, et al. Hybrid Aquila and Harris hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 104-116(in Chinese). doi: 10.11992/tis.202108031
    [21]
    YU J H, YANG J H. Adaptive multi-strategy learning particle swarm optimization with evolutionary state estimation[M]//Bio-Inspired Computing: theories and Applications. Berlin: Springer, 2022: 174-186.
    [22]
    WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009, 10: 207-244.
    [23]
    YUAN T T, DENG W H, TANG J, et al. Signal-to-noise ratio: a robust distance metric for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 4810-4819.
    [24]
    YANG J H, YU J H, HUANG C. Adaptive multistrategy ensemble particle swarm optimization with signal-to-noise ratio distance metric[J]. Information Sciences, 2022, 612: 1066-1094. doi: 10.1016/j.ins.2022.07.165
    [25]
    高建瓴, 喻明毫. 混合差分进化与二次插值改进哈里斯鹰算法[J]. 小型微型计算机系统, 2023, 44(7): 1352-1359.

    GAO J L, YU M H. Hybrid differential evolution and quadratic interpolation improved Harris hawks optimization algorithm[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1352-1359(in Chinese).
    [26]
    DEVAN P A M, HUSSIN F A, IBRAHIM R B, et al. An arithmetic-trigonometric optimization algorithm with application for control of real-time pressure process plant[J]. Sensors, 2022, 22(2): 617. doi: 10.3390/s22020617
    [27]
    KHODADADI N, SNASEL V, MIRJALILI S. Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints[J]. IEEE Access, 2022, 10: 16188-16208. doi: 10.1109/ACCESS.2022.3146374
    [28]
    ZHANG Y Y, CHI A N, MIRJALILI S. Enhanced Jaya algorithm: a simple but efficient optimization method for constrained engineering design problems[J]. Knowledge-Based Systems, 2021, 233: 107555. doi: 10.1016/j.knosys.2021.107555
    [29]
    NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917
    [30]
    NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert Systems with Applications, 2016, 57: 192-203. doi: 10.1016/j.eswa.2016.03.047
    [31]
    MIRJALILI S, HASHIM S Z M. A new hybrid PSOGSA algorithm for function optimization[C]//Proceedings of the International Conference on Computer and Information Application. Piscataway: IEEE Press, 2010: 374-377.
    [32]
    TANG Z Y, ZHANG D X. A modified particle swarm optimization with an adaptive acceleration coefficients[C]//Proceedings of the Asia-Pacific Conference on Information Processing. Piscataway: IEEE Press, 2009: 330-332.
    [33]
    DEHKORDI A A, SADIQ A S, MIRJALILI S, et al. Nonlinear-based chaotic Harris hawks optimizer: algorithm and Internet of vehicles application[J]. Applied Soft Computing, 2021, 109: 107574. doi: 10.1016/j.asoc.2021.107574
    [34]
    HUSSAIN K, ZHU W, MOHD SALLEH M N. Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems[J]. IEEE Access, 2019, 7: 147596-147616. doi: 10.1109/ACCESS.2019.2946664
    [35]
    NAIK M K, PANDA R, WUNNAVA A, et al. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J]. Multimedia Tools and Applications, 2021, 80(28): 35543-35583.
    [36]
    ARINI F Y, CHIEWCHANWATTANA S, SOOMLEK C, et al. Joint opposite selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems[J]. Expert Systems with Applications, 2022, 188: 116001. doi: 10.1016/j.eswa.2021.116001
    [37]
    DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30.
    [38]
    POLÁKOVÁ R, TVRDÍK J, BUJOK P. Differential evolution with adaptive mechanism of population size according to current population diversity[J]. Swarm and Evolutionary Computation, 2019, 50: 100519. doi: 10.1016/j.swevo.2019.03.014
    [39]
    张吉祥, 张孟健, 王德光. 增强型白骨顶鸡优化算法及其应用[J]. 小型微型计算机系统, 2024, 45(10): 2401-2410.

    ZHANG J X, ZHANG M J, WANG D G. Enhanced coot optimization algorithm and its application[J]. Journal of Chinese Computer Systems, 2024, 45(10): 2401-2410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views(249) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return