| Citation: | HUANG D,LONG J F,CHENG Y,et al. Experimental study on beam characteristics of µHT-1 thruster under wide range adjustment of operating parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2119-2128 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0406 |
The beam properties of the micro Hall thruster µHT-1, which is intended for space gravitational wave detection, are being experimentally investigated for the first time. A Faraday probe combined with a three-dimensional mobile mechanism was used for diagnosis, and the beam ion current density distribution under a wide range of the anode voltage from 700 to
| [1] |
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
|
| [2] |
罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划” 及“太极1号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.
LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program“taiji” and “taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 (in Chinese).
|
| [3] |
涂良成. 天琴计划的回顾与小结[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 253.
TU L C. Review and summary of Tianqin Project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 253 (in Chinese).
|
| [4] |
胡越欣, 张立华, 高永, 等. 空间引力波探测航天器关键技术分析[J]. 航天器工程, 2022, 31(4): 1-7. doi: 10.3969/j.issn.1673-8748.2022.04.001
HU Y X, ZHANG L H, GAO Y, et al. Analysis of key technologies of spacecraft for gravitational waves detection in space[J]. Spacecraft Engineering, 2022, 31(4): 1-7 (in Chinese). doi: 10.3969/j.issn.1673-8748.2022.04.001
|
| [5] |
祝竺, 赵艳彬, 尤超蓝, 等. 面向空间引力波探测的非接触式卫星平台无拖曳控制技术[J]. 南京亚洲成人在线一二三四五六区学报, 2022, 54(增刊1): 9-13.
ZHU Z, ZHAO Y B, YOU C L, et al. Drag-free control technology of non-contact satellite platform for space gravitational wave detection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(Sup 1): 9-13 (in Chinese).
|
| [6] |
于达仁, 崔凯, 刘辉, 等. 用于引力波探测的微牛级霍尔电推进技术[J]. 哈尔滨工业大学学报, 2020, 52(6): 171-181. doi: 10.11918/201911131
YU D R, CUI K, LIU H, et al. Micro-Newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 171-181 (in Chinese). doi: 10.11918/201911131
|
| [7] |
于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 194-212.
YU D R, NIU X, WANG T B, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 194-212 (in Chinese).
|
| [8] |
ZIEMER J, MARRESE-READING C, DUNN C, et al. Colloid microthruster flight performance results from space technology 7 disturbance reduction system[C]//Proceedings of International Electric Propulsion Conference. Reston: AIAA, 2017.
|
| [9] |
LEITER H, LOTZ B, FEILI D, et al. Design development and test of the RIT-ÁX mini ion engine system[C]//Proceedings of the 31st International Electric Propulsion Conference. Michigan: IEPC, 2009: 179.
|
| [10] |
李永, 刘旭辉, 汪旭东, 等. 空间极小推力宽范围可调推进技术研究进展[J]. 空间控制技术与应用, 2019, 45(6): 1-12,19. doi: 10.3969/j.issn.1674-1579.2019.06.001
LI Y, LIU X H, WANG X D, et al. Review and prospect on the large-range thrust throttling technology with extremely small thrust[J]. Aerospace Control and Application, 2019, 45(6): 1-12,19 (in Chinese). doi: 10.3969/j.issn.1674-1579.2019.06.001
|
| [11] |
AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. (2017-02-01) [2013-05-28]. http://arxiv.org/abs/1702.00786, 2017.
|
| [12] |
HEY F G. Micro Newton thruster development[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2018.
|
| [13] |
XU S Y, XU L X, CONG L X, et al. First result of orbit verification of Taiji-1 hall micro thruster[J]. International Journal of Modern Physics A, 2021, 36: 2140013-21400S9. doi: 10.1142/S0217751X21400133
|
| [14] |
POTRIVITU G C, SUN Y F, BIN ROHAIZAT M W A, et al. A review of low-power electric propulsion research at the space propulsion centre Singapore[J]. Aerospace, 2020, 7(6): 67. doi: 10.3390/aerospace7060067
|
| [15] |
杭观荣, 李诗凝, 康小录, 等. 霍尔电推进空间应用现状及未来展望[J]. 推进技术, 2023, 44(6): 38-51.
HANG G R, LI S N, KANG X L, et al. Current space application status and future prospect of Hall electric propulsion[J]. Journal of Propulsion Technology, 2023, 44(6): 38-51 (in Chinese).
|
| [16] |
MIKELLIDES I G, KATZ I, GOEBEL D M, et al. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region[J]. Journal of Applied Physics, 2005, 98(11): 113303.1-113303.14.
|
| [17] |
HOFER R R, GOEBEL D M, MIKELLIDES I G, et al. Magnetic shielding of a laboratory Hall thruster. II. Experiments[J]. Journal of Applied Physics, 2014, 115(4): 043304.
|
| [18] |
朱悉铭, 宁中喜, 于达仁. HEP-70 霍尔推力器的发射光谱诊断研究[C]//第十八届全国等离子体科学技术会议摘要集. 合肥: 中国科学技术大学出版社, 2017: 240.
ZHU X M, NING Z X, YU D R. Emission spectroscopy diagnostics of HEP-70 Hall thruster [C]//Proceedings of the 18th National Conference on Plasma Science and Technology. Hefei: University of Science and Technology of China Press, 2017: 240(in Chinese).
|
| [19] |
陈新伟, 高俊, 顾左, 等. 变工况下自励磁模式 LHT-60 霍尔推力器放电特性试验研究[J]. 真空与低温, 2022, 28(1): 106-114(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.01.013
CHEN X W, GAO J, GU Z, et al. Experimental study on discharge characteristics of self-field mode LHT-60 Hall thruster under variable operating conditions[J]. Vacuum and Cryogenics, 2022, 28(1): 106-114. doi: 10.3969/j.issn.1006-7086.2022.01.013
|
| [20] |
LU S X, LUO W, LONG J F, et al. Numerical simulation optimization of neutral flow dynamics in low-power Hall thruster[J]. Results in Physics, 2023, 46: 106268. doi: 10.1016/j.rinp.2023.106268
|
| [21] |
罗威, 龙建飞, 徐禄祥, 等. 霍尔推力器放电通道中性气体分布及检测技术研究进展[J]. 固体火箭技术, 2023, 46(1): 158-166. doi: 10.7673/j.issn.1006-2793.2023.01.019
LUO W, LONG J F, XU L X, et al. Research progress of distribution and detection technology neutral gas in Hall thruster discharge channel[J]. Journal of Solid Rocket Technology, 2023, 46(1): 158-166 (in Chinese). doi: 10.7673/j.issn.1006-2793.2023.01.019
|
| [22] |
龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器供气管路的气路分压绝缘方法及其应用: 中国, CN114458565B[P]. 2022-07-12.
LONG J F, XU L X, WU M S, et al. A method of gas circuit pressure divider insulation for Hall thruster supply line and its application: China, CN114458565B[P]. 2022-07-12(in Chinese).
|
| [23] |
龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器环式分压气路绝缘结构: 中国, CN114458564B[P]. 2022-07-12.
LONG J F, XU L X, WU M S, et al. An annular voltage-division gas path insulation structure for Hall thruster: China, CN114458564B [P]. 2022-07-12(in Chinese).
|
| [24] |
宁中喜. 霍尔推力器羽流发散角的定向探针测量方法[J]. 推进技术, 2011, 32(6): 895-899.
NING Z X. Directional probe measurement of plume divergence angle in Hall thrusters[J]. Journal of Propulsion Technology, 2011, 32(6): 895-899 (in Chinese).
|
| [25] |
龙建飞, 张天平, 吴辰宸, 等. LIPS-200离子推力器放电室出口离子密度分布研究[J]. 推进技术, 2018, 39(5): 1194-1200.
LONG J F, ZHANG T P, WU C C, et al. Study on ion density distribution in discharge chamber exit of LIPS-200 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(5): 1194-1200 (in Chinese).
|
| [26] |
刘星宇, 李鸿, 毛威, 等. 霍尔推力器能量损失系统性评价方法[J]. 推进技术, 2022, 43(7): 470-480.
LIU X Y, LI H, MAO W, et al. Systematic evaluation method for power loss of Hall thruster[J]. Journal of Propulsion Technology, 2022, 43(7): 470-480 (in Chinese).
|
| [27] |
商圣飞, 顾左, 贺碧蛟, 等. 离子推力器束流密度分布模型[J]. 真空科学与技术学报, 2015, 35(12): 1414-1419.
SHANG S F, GU Z, HE B J, et al. Modelling of ion beam current density of ion thruster[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(12): 1414-1419 (in Chinese).
|
| [28] |
卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响[J]. 物理学报, 2013, 62(5): 279-286. doi: 10.7498/aps.62.055202
QING S W, E P, DUAN P. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster[J]. Acta Physica Sinica, 2013, 62(5): 279-286 (in Chinese). doi: 10.7498/aps.62.055202
|
| [29] |
杨三祥, 王倩楠, 高俊, 等. 径向磁场对霍尔推力器性能影响的数值模拟研究[J]. 物理学报, 2022, 71(10): 347-355.
YANG S X, WANG Q N, GAO J, et al. Numerical study of the effect of radial magnetic field on performance of Hall thruster[J]. Acta Physica Sinica, 2022, 71(10): 347-355 (in Chinese).
|