Volume 51 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
LIU R D,JIANG J,ZHANG Z,et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2165-2175 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0403
Citation: LIU R D,JIANG J,ZHANG Z,et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2165-2175 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0403

Direct lift control technology of carrier aircraft landing based on reinforcement learning

doi: 10.13700/j.bh.1001-5965.2023.0403
More Information
  • Corresponding author: E-mail:jiangju@nuaa.edu.cn
  • Received Date: 21 Jun 2023
  • Accepted Date: 10 Nov 2023
  • Available Online: 01 Dec 2023
  • Publish Date: 24 Nov 2023
  • The direct lift control method of automatic landing based on Proximal Policy Optimization (PPO) algorithm was proposed to solve the problem that it is easy to touch ship due to disturbance of deck movement and carrier air wake during automatic landing of carrier aircraft. The PPO controller takes six state variables of pitch angle, height, flight path angle, pitch angle rate, height error and flight path angle rate as input and output as flap deflection angle, realizing the rapid response of carrier aircraft in different landing states of flight path angle. Compared with traditional PID controller, the Actor-Critic network in PPO controller greatly improves the calculation efficiency of control quantity, and also reduces the difficulty of parameter optimization. The simulation experiment in this paper is based on the dynamics/kinematics model of F/A-18 aircraft constructed in Matlab/Simulink. The intensive learning and training environment built on PyCharm platform is used to realize the data interaction between the two platforms through user datagram protocol (UDP) communication. The simulation results show that the proposed method has the characteristics of fast response speed and small dynamic error, and can stabilize the landing height error within ±0.2 m, with high control accuracy.

     

  • loading
  • [1]
    张守权, 王华明. 舰载机全自动着舰综述[J]. 飞机设计, 2022, 42(3): 20-24.

    ZHANG S Q, WANG H M. Summary report on automatic carrier landing system[J]. Aircraft Design, 2022, 42(3): 20-24 (in Chinese).
    [2]
    甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435.

    ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435 (in Chinese).
    [3]
    张守权. 基于直接力控制的人工着舰技术综述[J]. 飞机设计, 2022, 42(2): 21-25.

    ZHANG S Q. A review of manual carrier landing technology based on direct force control[J]. Aircraft Design, 2022, 42(2): 21-25 (in Chinese).
    [4]
    WU W H, SONG L T, ZHANG Y, et al. Nonlinear comprehensive decoupling controller based on direct lift control for carrier landing[J]. IEEE Access, 2022, 10: 113875-113887.
    [5]
    YAN Y D, YANG J, LIU C J, et al. On the actuator dynamics of dynamic control allocation for a small fixed-wing UAV with direct lift control[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 984-991. doi: 10.1109/TCST.2019.2945909
    [6]
    GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247.
    [7]
    罗飞, 张军红, 耿延升, 等. 动态逆反馈控制框架下直接升力控制的控制分配研究[J]. 航空科学技术, 2022, 33(8): 51-60.

    LUO F, ZHANG J H, GENG Y S, et al. Study on control allocation technology of direct lift control under dynamic inversion feedback control framework[J]. Aeronautical Science & Technology, 2022, 33(8): 51-60 (in Chinese).
    [8]
    魏毅寅, 郝明瑞, 范宇. 人工智能技术在宽域飞行器控制中的应用[J]. 宇航学报, 2023, 44(4): 530-537.

    WEI Y Y, HAO M R, FAN Y. The application of artificial intelligence technology in wide-field vehicle control[J]. Journal of Astronautics, 2023, 44(4): 530-537 (in Chinese).
    [9]
    孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799.

    SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese).
    [10]
    付宇鹏, 邓向阳, 何明, 等. 基于强化学习的固定翼飞机姿态控制方法[J]. 控制与决策, 2023, 38(9): 2505-2510.

    FU Y P, DENG X Y, HE M, et al. Reinforcement learning based attitude controller design[J]. Control and Decision, 2023, 38(9): 2505-2510 (in Chinese).
    [11]
    张瑞卿, 钟睿, 徐毅. 基于强化学习的航天器姿态控制器设计[J]. 上海航天(中英文), 2023, 40(1): 80-85.

    ZHANG R Q, ZHONG R, XU Y. Satellite attitude control based on reinforcement learning method[J]. Aerospace Shanghai (Chinese & English), 2023, 40(1): 80-85 (in Chinese).
    [12]
    金磊, 杨绍龙. 基于强化学习的航天器姿态预设性能容错控制[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(8): 2404-2412.

    JIN L, YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2404-2412 (in Chinese).
    [13]
    付宇鹏, 邓向阳, 朱子强, 等. 基于模仿强化学习的固定翼飞机姿态控制器[J]. 海军航空大学学报, 2022, 37(5): 393-399.

    FU Y P, DENG X Y, ZHU Z Q, et al. Imitation reinforcement learning based attitude controller for fixed-wing aircraft[J]. Journal of Naval Aviation University, 2022, 37(5): 393-399 (in Chinese).
    [14]
    周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报, 2023, 44(4): 126731.

    ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision making and simulation based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126731 (in Chinese).
    [15]
    黄江涛, 刘刚, 周攀, 等. 基于深度强化学习技术的舰载无人机自主着舰控制研究[J]. 南京师范大学学报(工程技术版), 2022, 22(3): 63-71.

    HUANG J T, LIU G, ZHOU P, et al. Research on autonomous landing control of carrier-borne UCAV based on deep reinforcement learning technology[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2022, 22(3): 63-71 (in Chinese).
    [16]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J/OL]. (2017-08-28)[2023-06-14]. http://doi.org/10.48550/arXiv.1707.06347.
    [17]
    GU Y, CHENG Y H, YU K, et al. Anti-martingale proximal policy optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(10): 6421-6432. doi: 10.1109/TCYB.2022.3170355
    [18]
    CHAKRABORTY A, SEILER P, BALAS G J. Susceptibility of F/A-18 flight controllers to the falling-leaf mode: linear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 57-72. doi: 10.2514/1.50674
    [19]
    张永花. 舰载机着舰过程甲板运动建模及补偿技术研究[D]. 南京: 南京亚洲成人在线一二三四五六区, 2012: 9-10.

    ZHANG Y H. Research on deck motion modeling and compensation technology of carrier-based aircraft landing process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 9-10 (in Chinese).
    [20]
    WOODCPCK T J. Background information and user guide for MIL-F-8785C[R]. Washington, D. C. : Air Force Wright Aeronautical, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views(335) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return