Volume 51 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
CHENG X Q,CAI M Q,WANG S W. Study progress of gap sealing structure for aircraft movable wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1816-1823 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0397
Citation: CHENG X Q,CAI M Q,WANG S W. Study progress of gap sealing structure for aircraft movable wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1816-1823 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0397

Study progress of gap sealing structure for aircraft movable wing

doi: 10.13700/j.bh.1001-5965.2023.0397
More Information
  • Corresponding author: E-mail:xiaoquan_cheng@cqjj8.com
  • Received Date: 19 Jun 2023
  • Accepted Date: 08 Sep 2023
  • Available Online: 22 Sep 2023
  • Publish Date: 15 Sep 2023
  • The gap between the main wing surface and the movable wing surface might have a certain impact on the flight performance of the aircraft. The application of the gap-sealing structure will improve the surface smoothness of the wing while achieving effects such as increasing lift, reducing drag, and optimizing operation. This article compares various sealing structure design forms and divides them into two categories: relying on materials and relying on mechanisms. The benefits and drawbacks of each category are examined.The sealing structure products of several aviation parts companies are compared. Analysis is done on intricate designs like wear-resistant free ends. Design suggestions are provided at last, such as rapid disassembly and repair, limitation for the range of the structural stiffness, and a combination of simulation and experiment while designing.

     

  • loading
  • [1]
    李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.

    LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese).
    [2]
    金伟, 杨智春, 孟德虹, 等. 先进战斗机全动V尾抖振动强度设计与验证[J]. 航空学报, 2020, 41(6): 523473.

    JIN W, YANG Z C, MENG D H, et al. Strength desigh and test of advanced fighter all-moving twin V-tail buffet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523473(in Chinese).
    [3]
    聂春生, 阎君, 曹占伟, 等. 头部外形对升力体转捩影响的试验研究[J]. 导弹与航天运载技术, 2022(4): 104-108.

    NIE C S, YAN J, CAO Z W, et al. Study on the influence of head shape on transition of lifting body[J]. Missiles and Space Vehicles, 2022(4): 104-108(in Chinese).
    [4]
    HERNANDEZ J, FOULIARD Q P, VO K, et al. Characterization of corrosive defects through pulsed eddy current thermography for aircraft panels: AIAA 2021-0433[R]. Reston: AIAA, 2021.
    [5]
    桑建华, 张宗斌, 王烁. 低RCS飞行器表面弱散射源研究[J]. 航空工程进展, 2012, 3(3): 257-262. doi: 10.3969/j.issn.1674-8190.2012.03.002

    SANG J H, ZHANG Z B, WANG S. Research on the radar cross section of weak scatterers on stealth vehicle[J]. Advances in Aeronautical Science and Engineering, 2012, 3(3): 257-262(in Chinese). doi: 10.3969/j.issn.1674-8190.2012.03.002
    [6]
    王立研, 王菁华, 杨炳尉. 高超声速飞行器控制面动密封技术[J]. 宇航材料工艺, 2016, 46(3): 1-6. doi: 10.3969/j.issn.1007-2330.2016.03.001

    WANG L Y, WANG J H, YANG B W. Dynamic seal technology for control surface of hypersonic vehicles[J]. Aerospace Materials & Technology, 2016, 46(3): 1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.03.001
    [7]
    DECKER G R, ROBEDEAU S A. Slotted flaperon seal mechanism for aircraft devices: US11046421[P]. 2021-06-29.
    [8]
    潘立新, 孔斌, 何娅梅, 等. 一种飞行器舵面前缘随动封严结构: CN204433037U[P]. 2015-07-01.

    PAN L X, KONG B, HE Y M, et al. A kind of follow-up sealing structure for the leading edge of aircraft rudder surface: CN204433037U[P]. 2015-07-01(in Chinese).
    [9]
    胡利, 禹建军, 刘衍腾, 等. 一种前缘襟翼缝隙封严机构: CN108609160A[P]. 2021-05-07.

    HU L, YU J J, LIU Y T, et al. A kind of gap sealing mechanism for the leading edge of flap: CN108609160A[P]. 2021-05-07(in Chinese).
    [10]
    WILDMAN E. Flight surface seal: US8292236[P]. 2012-10-23.
    [11]
    JOHNSON B D. Fairing arrangements for aircraft: US7051982[P]. 2006-05-30.
    [12]
    王东, 胡珺, 陈世春, 等. 一种飞机操纵面封严结构: CN207725605U[P]. 2018-08-14.

    WANG D, HU J, CHEN S C, et al. Airplane control face structure of obturaging: CN207725605U[P]. 2018-08-14(in Chinese).
    [13]
    成骏, 阚小如, 陶义建. 基于Dynaform的飞机封严板压窝成形工艺分析与优化设计[J]. 锻压技术, 2021, 46(1): 37-42.

    CHENG J, KAN X R, TAO Y J. Analysis and optimal design on press dimple forming process for aircraft seal plate based on Dynaform[J]. Forging & Stamping Technology, 2021, 46(1): 37-42(in Chinese).
    [14]
    BLADES P. Seal for aircraft wing: US10480653[P]. 2019-11-19.
    [15]
    许腾飞, 王新峰, 郭树祥. 高弹性橡胶夹层结构封严板分析方法[J]. 南京亚洲成人在线一二三四五六区学报, 2020, 52(3): 394-400.

    XU T F, WANG X F, GUO S X. Analytical method of sealed plate with hyperelastic rubber sandwich structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 394-400(in Chinese).
    [16]
    徐丽, 陈跃良, 武书阁, 等. 舰载机舰面停放环境及腐蚀情况研究[J]. 飞机设计, 2016, 36(6): 54-57.

    XU L, CHEN Y L, WU S G, et al. The study about the deck park environment of carrier-based aircraft and corrosive state[J]. Aircraft Design, 2016, 36(6): 54-57(in Chinese).
    [17]
    徐海宇. PLA/竹纤维复合材料的制备及其性能研究[D]. 杭州: 浙江农林大学, 2021.

    XU H Y. Preparation and properties of PLA/bamboo fiber composites[D]. Hangzhou: Zhejiang A & F University, 2021(in Chinese).
    [18]
    梁珊, 李杨, 吴建军, 等. 竹纤维/玻璃纤维混杂增强聚丙烯复合材料[J]. 塑料, 2012, 41(5): 86-88.

    LIANG S, LI Y, WU J J, et al. Properties of bamboo fiber/glass fiber/hybrid reinforced polypropylene composite material[J]. Plastics, 2012, 41(5): 86-88(in Chinese).
    [19]
    STEINETZ B M. Seal technology for hypersonic vehicle and propulsion: an overview[C]//Proceedings of the Short Course on Hypersonics Structures and Materials. Hampton: NTRS, 2008.
    [20]
    BLADES P. Seal plate for an aerodynamic surface: US11299254[P]. 2022-04-12.
    [21]
    NEAL M A, SMITH C R. Dynamic conformal aerodynamic seal (CAS) for aircraft control surfaces: US10017239[P]. 2018-07-10.
    [22]
    POLL D I A. Transition in the infinite swept attachment line boundary layer[J]. Aeronautical Quarterly, 1979, 30(4): 607-629. doi: 10.1017/S0001925900008763
    [23]
    HAFTMANN B, DEBBELER F J, GIELEN H. Takeoff drag prediction for airbus A300-600 and A310 compared with flight test results[J]. Journal of Aircraft, 1988, 25(12): 1088-1096. doi: 10.2514/3.45707
    [24]
    SPAID F W. High Reynolds number, multielement airfoil flowfieldmeasurements[J]. Journal of Aircraft, 2000, 37(3): 499-507. doi: 10.2514/2.2626
    [25]
    赖欢, 祝长江, 陈万华, 等. 大型低温风洞结构设计关键技术分析[J]. 实验流体力学, 2022, 36(1): 19-26. doi: 10.11729/syltlx20210040

    LAI H, ZHU C J, CHEN W H, et al. Key technology for mechanical design in large-scale cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 19-26(in Chinese). doi: 10.11729/syltlx20210040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(595) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return