| Citation: | LI Y,WAN Z,DENG C Z,et al. Edge-intelligent transmission optimization of emergency surveillance video based on IcD-FDRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2314-2329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0378 |
Emergency surveillance video transmission is a key technical means to improve emergency handling capability under circumstances such as emergency monitoring, public security incident handling, and post-disaster reconstruction. It has gradually become a key focus of research and development in the construction of the national smart emergency system. With the continuous development of 5G technology and decision-making artificial intelligence technology in recent years, an edge-intelligent transmission architecture for emergency surveillance video was established, aimed at public safety and emergency rescue monitoring in local areas. This model seeks to achieve adaptive and high-quality transmission of emergency surveillance video. Furthermore, the importance measurement method of emergency surveillance video was designed, and an intra-clustered dynamic federated deep reinforcement learning algorithm was proposed. The proposed optimization method based on intra-clustered dynamic federated deeps reinforcement learning (IcD-FDRL) enhances the edge-intelligent transmission of emergency surveillance video, breaks monitoring data silos, improves algorithm learning efficiency, and realizes low-delay, low-cost, high-quality, and priority transmission of important emergency surveillance video. Finally, a simulation experiment was performed and its results were compared, verifying the effectiveness of the proposed model and algorithms.
| [1] |
张铮, 李政华. 中国特色应急管理制度体系构建: 现实基础、存在问题与发展策略[J]. 管理世界, 2022, 38(1): 138-144. doi: 10.3969/j.issn.1002-5502.2022.01.010
ZHANG Z, LI Z H. Emergency management system construction with Chinese characteristics: realistic foundation, existing problems and development strategy[J]. Journal of Management World, 2022, 38(1): 138-144(in Chinese). doi: 10.3969/j.issn.1002-5502.2022.01.010
|
| [2] |
刘鲲. 智能视频监控中事件理解的关键技术研究[D]. 北京: 北京邮电大学, 2021.
LIU K. Research on key technologies of event understanding in intelligent video surveillance[D]. Beijing: Beijing University of Posts and Telecommunications, 2021(in Chinese).
|
| [3] |
黄韬, 刘江, 汪硕, 等. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150. doi: 10.11959/j.issn.1000-436x.2021006
HUANG T, LIU J, WANG S, et al. Survey of the future network technology and trend[J]. Journal on Communications, 2021, 42(1): 130-150(in Chinese). doi: 10.11959/j.issn.1000-436x.2021006
|
| [4] |
伏玉笋, 杨根科. 人工智能在移动通信中的应用: 挑战与实践[J]. 通信学报, 2020, 41(9): 190-201.
FU Y S, YANG G K. Application of artificial intelligence in mobile communication: challenge and practice[J]. Journal on Communications, 2020, 41(9): 190-201(in Chinese).
|
| [5] |
梁应敞, 谭俊杰, NIYATO D. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1-17. doi: 10.11959/j.issn.1000-436x.2020145
LIANG Y C, TAN J J, NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1-17(in Chinese). doi: 10.11959/j.issn.1000-436x.2020145
|
| [6] |
LI Y. A suvey on edge intelligent video surveillance with deep reinforcement learning[J]. Journal of Network Intelligence, 2022, 7(1): 70-83.
|
| [7] |
WANG X F, LI R B, WANG C Y, et al. Attention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge caching[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 154-169. doi: 10.1109/JSAC.2020.3036946
|
| [8] |
LEI M, LI Q, GE X H, et al. Partially collaborative edge caching based on federated deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1389-1394. doi: 10.1109/TVT.2022.3206876
|
| [9] |
LI Y. Federated deep reinforcement learning-based caching and bitrate adaptation for VR panoramic video in clustered MEC networks[J]. Electronics, 2022, 11(23): 3968. doi: 10.3390/electronics11233968
|
| [10] |
WEI Y K, ZHOU S P, LENG S P, et al. Federated learning empowered end-edge-cloud cooperation for 5G HetNet security[J]. IEEE Network, 2021, 35(2): 88-94. doi: 10.1109/MNET.011.2000340
|
| [11] |
QUINTANA-RAMIREZ I, SEQUEIRA L, RUIZ-MAS J. An edge-cloud approach for video surveillance in public transport vehicles[J]. IEEE Latin America Transactions, 2021, 19(10): 1763-1771. doi: 10.1109/TLA.2021.9477277
|
| [12] |
YAN K P, SHAN H G, SUN T X, et al. Reinforcement learning-based mobile edge computing and transmission scheduling for video surveillance[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1142-1156.
|
| [13] |
KE R M, ZHUANG Y F, PU Z Y, et al. A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4962-4974. doi: 10.1109/TITS.2020.2984197
|
| [14] |
MING Z X, CHEN J S, CUI L Z, et al. Edge-based video surveillance with graph-assisted reinforcement learning in smart construction[J]. IEEE Internet of Things Journal, 2022, 9(12): 9249-9265. doi: 10.1109/JIOT.2021.3090513
|
| [15] |
HOU B, ZHANG J X. Real-time surveillance video salient object detection using collaborative cloud-edge deep reinforcement learning[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2021: 1-8.
|
| [16] |
KIM D, KIM K, PARK S. Automatic PTZ camera control based on deep-Q network in video surveillance system[C]//Proceedings of the International Conference on Electronics, Information, and Communication. Piscataway: IEEE Press, 2019: 1-3.
|
| [17] |
施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89. doi: 10.7544/issn1000-1239.2019.20180760
SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89(in Chinese). doi: 10.7544/issn1000-1239.2019.20180760
|
| [18] |
赵梓铭, 刘芳, 蔡志平, 等. 边缘计算: 平台、应用与挑战[J]. 计算机研究与发展, 2018, 55(2): 327-337. doi: 10.7544/issn1000-1239.2018.20170228
ZHAO Z M, LIU F, CAI Z P, et al. Edge computing: platforms, applications and challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337(in Chinese). doi: 10.7544/issn1000-1239.2018.20170228
|
| [19] |
施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. doi: 10.7544/issn1000-1239.2017.20160941
SHI W S, SUN H, CAO J, et al. Edge computing: an emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924(in Chinese). doi: 10.7544/issn1000-1239.2017.20160941
|
| [20] |
HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing-a key technology towards 5G[J]. European Telecommunications Standards Institute, 2015: 1-16.
|
| [21] |
TALEB T, SAMDANIS K, MADA B, et al. On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1657-1681.
|
| [22] |
吴冀衍, 程渤, 南国顺, 等. 面向异构无线网移动视频传输的联合信源信道编码方式[J]. 计算机学报, 2015, 38(2): 439-454.
WU J Y, CHENG B, NAN G S, et al. A novel joint source-channel coding scheme for mobile video delivery in heterogeneous wireless networks[J]. Chinese Journal of Computers, 2015, 38(2): 439-454(in Chinese).
|
| [23] |
SAHA N, ZANGOOEI M, GOLKARIFARD M, et al. Deep reinforcement learning approaches to network slice scaling and placement: a survey[J]. IEEE Communications Magazine, 2023, 61(2): 82-87. doi: 10.1109/MCOM.006.2200534
|
| [24] |
CHIEN W C, WENG H Y, LAI C F. Q-learning based collaborative cache allocation in mobile edge computing[J]. Future Generation Computer Systems, 2020, 102: 603-610.
|
| [25] |
WANG S, ZHANG X, ZHANG Y, et al. A survey on mobile edge networks: convergence of computing, caching and communications[J]. IEEE Access, 2017, 5: 6757-6779. doi: 10.1109/ACCESS.2017.2685434
|
| [26] |
李佳, 谢人超, 贾庆民, 等. 面向视频流的MEC缓存转码联合优化研究[J]. 电信科学, 2018, 34(8): 76-86.
LI J, XIE R C, JIA Q M, et al. A survey on joint optimization of MEC caching and transcoding for video streaming[J]. Telecommunications Science, 2018, 34(8): 76-86(in Chinese).
|
| [27] |
MANIOTIS P, THOMOS N. Viewport-aware deep reinforcement learning approach for 360° video caching[J]. IEEE Transactions on Multimedia, 2021, 24: 386-399.
|
| [28] |
ZHONG C, GURSOY M C, VELIPASALAR S. Deep reinforcement learning-based edge caching in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 48-61. doi: 10.1109/TCCN.2020.2968326
|
| [29] |
PANG Z Y, SUN L F, HUANG T C, et al. Towards QoS-aware cloud live transcoding: a deep reinforcement learning approach[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2019: 670-675.
|
| [30] |
WAN Z, LI Y. Deep reinforcement learning-based collaborative video caching and transcoding in clustered and intelligent edge B5G networks[J]. Wireless Communications and Mobile Computing, 2020, 2020(1): 6684293.
|
| [31] |
AN B, SUN S, WANG R D. Deep reinforcement learning for quantitative trading: challenges and opportunities[J]. IEEE Intelligent Systems, 2022, 37(2): 23-26. doi: 10.1109/MIS.2022.3165994
|
| [32] |
HE X M, WANG K, HUANG H W, et al. Green resource allocation based on deep reinforcement learning in content-centric IoT[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 781-796. doi: 10.1109/TETC.2018.2805718
|
| [33] |
MENG F, CHEN P, WU L N, et al. Power allocation in multi-user cellular networks: deep reinforcement learning approaches[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6255-6267. doi: 10.1109/TWC.2020.3001736
|
| [34] |
PARK S, KIM J, KWON D, et al. Joint offloading and streaming in mobile edges: a deep reinforcement learning approach[C]//Proceedings of the IEEE VTS Asia Pacific Wireless Communications Symposium. Piscataway: IEEE Press, 2019: 1-4.
|
| [35] |
ZHANG H, WU W J, WANG C Y, et al. Deep reinforcement learning-based offloading decision optimization in mobile edge computing[C]//Proceedings of the IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2019: 1-7.
|
| [36] |
HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44-55. doi: 10.1109/TVT.2017.2760281
|
| [37] |
WANG F X, ZHANG C, WANG F, et al. Intelligent edge-assisted crowdcast with deep reinforcement learning for personalized QoE[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2019: 910-918.
|
| [38] |
CHEN M H, PONEC M, SENGUPTA S, et al. Utility maximization in peer-to-peer systems with applications to video conferencing[J]. IEEE/ACM Transactions on Networking, 2012, 20(6): 1681-1694. doi: 10.1109/TNET.2012.2201166
|
| [39] |
SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.
|
| [40] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
|