Volume 51 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
LIANG Z F,XIA H Y,TAN Y M,et al. Aerial image stitching algorithm based on unsupervised deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2437-2449 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0366
Citation: LIANG Z F,XIA H Y,TAN Y M,et al. Aerial image stitching algorithm based on unsupervised deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2437-2449 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0366

Aerial image stitching algorithm based on unsupervised deep learning

doi: 10.13700/j.bh.1001-5965.2023.0366
Funds:

Guangxi Leaderboard Technology Project (Guike JB23023006); Guangxi Key Research and Development Project (Guike AB23026103); National Natural Science Foundation of China (62106054); Major Special Projects of Guangxi Science and Technology (Guike AA20302003)

More Information
  • Corresponding author: E-mail:xhy22@mailbox.gxnu.edu.cn
  • Received Date: 15 Jun 2023
  • Accepted Date: 29 Mar 2024
  • Available Online: 26 Apr 2024
  • Publish Date: 22 Apr 2024
  • Traditional image stitching approaches predominantly depend on accurate feature localization and distribution, which leads to suboptimal robustness in intricate aerial photography contexts. Consequently, a comprehensive unsupervised deep learning framework for aerial image stitching was devised, encompassing an unsupervised deep homography estimation network and an unsupervised image fusion network. First, the deep homography estimation network was employed to provide precise alignment data for subsequent stitching by ascertaining the homographic transformation between reference and target images. Subsequently, the image fusion network was utilized to learn deformation patterns of aerial image stitching, generating the final stitched output. Additionally, a real dataset for unsupervised aerial image stitching was introduced to facilitate the training of the learning framework. Comparative analysis was conducted on the suggested unmanned aerial vehicle aerial image dataset, incorporating scale-invariant feature transform (SIFT) + Ransac, accelerated-nonlinear diffusion-based feature detection and matching (AKAZE) + boosted efficient binary local image descriptor (BEBLID), oriented brief (ORB) + Ransac, and deep-learning-based image stitching algorithms. Experiments show that the value of structural similarity (SSIM) is increased by 39.94%; the peak signal-to-noise ratio (PSNR) is increased by 36.55%, and the root mean square error (RMSE) is reduced by 66.09%. Moreover, the proposed method demonstrates superior visual stitching performance and robustness in authentic aerial scenarios compared to existing deep-learning-based and traditional image stitching methods.

     

  • loading
  • [1]
    蒲良, 张学军. 基于深度学习的无人机视觉目标检测与跟踪[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(5): 872-880.

    PU L, ZHANG X J. Deep learning based UAV vision object detection and tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 872-880(in Chinese).
    [2]
    YANG C, LIU X, ZHOU H, et al. Towards accurate image stitching for drone-based wind turbine blade inspection[J]. Renewable Energy, 2023, 203: 267-279. doi: 10.1016/j.renene.2022.12.063
    [3]
    XIE W H. Research on target extraction system of UAV remote sensing image based on artificial intelligence[C]//Proceedings of the IEEE International Conference on Integrated Circuits and Communication Systems. Piscataway: IEEE Press, 2023: 1-5.
    [4]
    CHEN J, LI Z X, PENG C L, et al. UAV image stitching based on optimal seam and half-projective warp[J]. Remote Sensing, 2022, 14(5): 1068. doi: 10.3390/rs14051068
    [5]
    JONG T K, BONG D B L. An effective feature detection approach for image stitching of near-uniform scenes[J]. Signal Processing: Image Communication, 2023, 110: 116872. doi: 10.1016/j.image.2022.116872
    [6]
    ZHANG J D, XIU Y. Image stitching based on human visual system and SIFT algorithm[J]. The Visual Computer, 2024, 40(1): 427-439. doi: 10.1007/s00371-023-02791-4
    [7]
    宋飞, 杨扬, 杨昆, 等. 基于双特征的丘陵山区耕地低空遥感图像配准算法[J]. 北京亚洲成人在线一二三四五六区学报, 2018, 44(9): 1952-1963.

    SONG F, YANG Y, YANG K, et al. Low-altitude remote sensing image registration algorithm based on dual-feature for arable land in hills and mountains[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1952-1963(in Chinese).
    [8]
    宗慧琳, 袁希平, 甘淑, 等. 改进AKAZE算法的泥石流区无人机影像特征匹配[J]. 测绘通报, 2023(2): 91-96.

    ZONG H L, YUAN X P, GAN S, et al. An improved AKAZE algorithm for UAV image feature matching in debris flow area[J]. Bulletin of Surveying and Mapping, 2023(2): 91-96(in Chinese).
    [9]
    ZARAGOZA J, CHIN T J, BROWN M S, et al. As-projective-as-possible image stitching with moving DLT[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 2339-2346.
    [10]
    LIN C C, PANKANTI S U, RAMAMURTHY K N, et al. Adaptive as-natural-as-possible image stitching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1155-1163.
    [11]
    CHANG C H, SATO Y, CHUANG Y Y. Shape-preserving half-projective warps for image stitching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 3254-3261.
    [12]
    CHEN Y S, CHUANG Y Y. Natural image stitching with the global similarity prior[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 186-201.
    [13]
    梁镇锋, 夏海英. 一种面向无人机航拍图像的快速拼接算法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 41-52.

    LIANG Z F, XIA H Y. A fast stitching algorithm for UAV aerial images[J]. Journal of Guangxi Normal University (Natural Science Edition), 2023, 41(3): 41-52(in Chinese).
    [14]
    HOANG V D, TRAN D P, NHU N G, et al. Deep feature extraction for panoramic image stitching[C]//Asian Conference on Intelligent Information and Database Systems. Berlin: Springer, 2020: 141-151.
    [15]
    YAN M, YIN Q, GUO P. Image stitching with single-hidden layer feedforward neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2016: 4162-4169.
    [16]
    NIE L, LIN C Y, LIAO K, et al. A view-free image stitching network based on global homography[J]. Journal of Visual Communication and Image Representation, 2020, 73: 102950. doi: 10.1016/j.jvcir.2020.102950
    [17]
    NIE L, LIN C Y, LIAO K, et al. Learning edge-preserved image stitching from large-baseline deep homography[EB/OL]. (2020-12-11)[2023-06-01]. http://arxiv.org/abs/2012.06194.
    [18]
    NIE L, LIN C Y, LIAO K, et al. Unsupervised deep image stitching: reconstructing stitched features to images[J]. IEEE Transactions on Image Processing, 2021, 30: 6184-6197. doi: 10.1109/TIP.2021.3092828
    [19]
    ZHU F Z, LI J C, ZHU B, et al. UAV remote sensing image stitching via improved VGG16 Siamese feature extraction network[J]. Expert Systems with Applications, 2023, 229: 120525. doi: 10.1016/j.eswa.2023.120525
    [20]
    HUANG C W, PAN X, CHENG J C, et al. Deep image registration with depth-aware homography estimation[J]. IEEE Signal Processing Letters, 2023, 30: 6-10. doi: 10.1109/LSP.2023.3238274
    [21]
    马腾宇, 李孜, 刘日升, 等. 基于无监督学习的多模态可变形配准[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(3): 658-664.

    MA T Y, LI Z, LIU R S, et al. Multimodal deformable registration based on unsupervised learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 658-664(in Chinese).
    [22]
    IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL]. (2016-11-04)[2023-06-01]. http://arxiv.org/abs/1602.07360.
    [23]
    HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. 2nd ed. Cambridge: Cambridge University Press, 2004.
    [24]
    JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial Transformer networks[C]//Proceedings of the 21th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2017-2025.
    [25]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [26]
    ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. doi: 10.1109/TCI.2016.2644865
    [27]
    JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 694-711.
    [28]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-06-01]. http://arxiv.org/abs/1409.1556.
    [29]
    BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73. doi: 10.1007/s11263-006-0002-3
    [30]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2564-2571.
    [31]
    DETONE D, MALISIEWICZ T, RABINOVICH A. Deep image homography estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 5668-5676.
    [32]
    NGUYEN T, CHEN S W, SHIVAKUMAR S S, et al. Unsupervised deep homography: a fast and robust homography estimation model[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2346-2353. doi: 10.1109/LRA.2018.2809549
    [33]
    WINKLER S, MOHANDAS P. The evolution of video quality measurement: from PSNR to hybrid metrics[J]. IEEE Transactions on Broadcasting, 2008, 54(3): 660-668. doi: 10.1109/TBC.2008.2000733
    [34]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [35]
    HODSON T O. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not[J]. Geoscientific Model Development, 2022, 15(14): 5481-5487. doi: 10.5194/gmd-15-5481-2022
    [36]
    LI J, WANG Z M, LAI S M, et al. Parallax-tolerant image stitching based on robust elastic warping[J]. IEEE Transactions on Multimedia, 2018, 20(7): 1672-1687. doi: 10.1109/TMM.2017.2777461
    [37]
    BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//European Conference on Computer Vision. Berlin: Springer, 2006: 404-417.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(548) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return