Volume 51 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
DUO L,REN Y,XU B Y,et al. MRI reconstruction based on geometry distillation and feature adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1946-1954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0323
Citation: DUO L,REN Y,XU B Y,et al. MRI reconstruction based on geometry distillation and feature adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1946-1954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0323

MRI reconstruction based on geometry distillation and feature adaptation

doi: 10.13700/j.bh.1001-5965.2023.0323
Funds:

National Natural Science Foundation of China (61962032)

More Information
  • Corresponding author: E-mail:duolin2003@126.com
  • Received Date: 07 Jun 2023
  • Accepted Date: 18 Aug 2023
  • Available Online: 27 Jun 2025
  • Publish Date: 12 Sep 2023
  • Although the existing compressed sensing-magnetic resonance imaging (CS-MRI) methods based on deep learning have achieved good results, the interpretability of these methods still faces challenges, and the transition from theoretical analysis to network design is not natural enough. In order to solve the above problems, this paper proposed a deep dual-domain geometry distillation feature adaptive network (DDGD-FANet). The deep unfolding network iteratively expanded the MRI reconstruction optimization problem into three sub-modules: data consistency module, dual-domain geometry distillation module, and adaptive network module. It could compensate for the lost context information of the reconstructed image, restore more texture details, remove global artifacts, and further improve the reconstruction effect. Three different sampling modes were used in the public dataset. The results show that DDGD-FANet achieves a higher peak signal-to-noise ratio and structural similarity index in all three sampling modes. At the Cartesian 10% compressed sensing(CS )ratio, the peak signal-to-noise ratio is increased by 5.01 dB, 4.81 dB, and 3.34 dB, respectively, higher than that of iterative shrinkage-thresholding algorithm (ISTA)-Net +, fast ISTA (FISTA)-Net, and DGDN models.

     

  • loading
  • [1]
    BIAN W Y. Optimization-based deep learning methods for magnetic resonance imaging reconstruction and synthesis[D]. Gainesville: University of Florida, 2022.
    [2]
    LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine, 2008, 25(2): 72-82. doi: 10.1109/MSP.2007.914728
    [3]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [4]
    QU X B, GUO D, CHEN Z, et al. Compressed sensing MRI based on nonsubsampled contourlet transform[C]//Proceedings of the IEEE International Symposium on IT in Medicine and Education. Piscataway: IEEE Press, 2008: 693-696.
    [5]
    STALIDIS G, MAGLAVERAS N, DIMITRIADIS A, et al. Parametric 4D modeling of myocardial surface motion applied to MRI data[C]//Proceedings of the Computers in Cardiology. Piscataway: IEEE Press, 1997: 319-322.
    [6]
    SONAWANE S S, AGNIHOTRI S P. Compressed MR imaging using wavelet transform[C]//Proceedings of the International Conference on Micro-Electronics and Telecommunication Engineering. Piscataway: IEEE Press, 2016: 259-264.
    [7]
    LINGALA S G, JACOB M. Blind compressive sensing dynamic MRI[J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145. doi: 10.1109/TMI.2013.2255133
    [8]
    LIANG D, WANG H F, YING L. SENSE reconstruction with nonlocal TV regularization[C]//Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE Press, 2009: 1032-1035.
    [9]
    OUYANG Y, CHEN Y, WU Y. A spatial regularization framework of orientation diffusion functions using total variation and wavelet[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Piscataway: IEEE Press, 2011: 272-275.
    [10]
    QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. doi: 10.1016/j.mri.2012.02.019
    [11]
    QU X B, HOU Y K, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. doi: 10.1016/j.media.2013.09.007
    [12]
    BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [13]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
    [14]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [15]
    WANG T H, LEI Y, FU Y B, et al. Medical imaging synthesis using deep learning and its clinical applications: a review[EB/OL]. (2020-04-21)[2023-02-01]. http://arxiv.org/abs/2004.10322v1.
    [16]
    WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]//Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Piscataway: IEEE Press, 2016: 514-517.
    [17]
    YANG G, YU S M, DONG H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321. doi: 10.1109/TMI.2017.2785879
    [18]
    YANG Y, SUN J, LI H B, et al. ADMM-CSNet: a deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. doi: 10.1109/TPAMI.2018.2883941
    [19]
    WANG S S, XIAO T H, LIU Q G, et al. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data[J]. Biomedical Signal Processing and Control, 2021, 68: 102579. doi: 10.1016/j.bspc.2021.102579
    [20]
    AGHABIGLOU A, EKSIOGLU E M. Deep unfolding architecture for MRI reconstruction enhanced by adaptive noise maps[J]. Biomedical Signal Processing and Control, 2022, 78: 104016. doi: 10.1016/j.bspc.2022.104016
    [21]
    YANG Y, SUN J, LI H B, et al. Deep ADMM-net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 10-18.
    [22]
    ZHANG J, GHANEM B. ISTA-net: interpretable optimization-inspired deep network for image compressive sensing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 1828-1837.
    [23]
    XIANG J X, DONG Y G, YANG Y J. FISTA-net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339. doi: 10.1109/TMI.2021.3054167
    [24]
    SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(2): 491-503. doi: 10.1109/TMI.2017.2760978
    [25]
    FAN X H, YANG Y, ZHANG J P. Deep geometric distillation network for compressive sensing MRI[C]//Proceedings of the IEEE EMBS International Conference on Biomedical and Health Informatics. Piscataway: IEEE Press, 2021: 1-4.
    [26]
    LU C, JIANG B R, MU Y D. Fast fourier convolution[C]//Proceedings of the Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2020: 4479-4488.
    [27]
    SINGH N M, IGLESIAS J E, ADALSTEINSSON E, et al. Joint frequency and image space learning for MRI reconstruction and analysis[J]. The Journal of Machine Learning for Biomedical Imaging, 2022, 2022: 018.
    [28]
    WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the Computer Vision–ECCV 2018. Berlin: Springer, 2018: 3-19.
    [29]
    CHENG J, WANG H F, ZHU Y J, et al. Model-based deep MR imaging: the roadmap of generalizing compressed sensing model using deep learning[EB/OL]. (2029-09-05)[2023-02-01]. http://arxiv.org/abs/1906.08143.
    [30]
    CUI Z X, ZHU Q Y, CHENG J, et al. Deep unfolding as iterative regularization for imaging inverse problems[EB/OL]. (2022-11-24)[2023-02-01]. http://arxiv.org/abs/2211.13452v1.
    [31]
    JIANG K, WANG Z Y, YI P, et al. Deep distillation recursive network for remote sensing imagery super-resolution[J]. Remote Sensing, 2018, 10(11): 1700. doi: 10.3390/rs10111700
    [32]
    BERNSTEIN M A, FAIN S B, RIEDERER S J. Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy[J]. Journal of Magnetic Resonance Imaging, 2001, 14(3): 270-280. doi: 10.1002/jmri.1183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views(264) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return