Volume 51 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
GUO J F,TAN B H,WANG Z M. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1172-1184 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0224
Citation: GUO J F,TAN B H,WANG Z M. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1172-1184 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0224

Fault diagnosis method of rolling bearing based on MDAM-GhostCNN

doi: 10.13700/j.bh.1001-5965.2023.0224
Funds:

National Natural Science Foundation of China (51465034) 

More Information
  • Corresponding author: E-mail:1426779121@qq.com
  • Received Date: 04 May 2023
  • Accepted Date: 20 Jun 2023
  • Available Online: 10 Jul 2023
  • Publish Date: 07 Jul 2023
  • A rolling bearing fault diagnostic approach based on mixture domain attention mechanism (MDAM)-GhostCNN is developed to address the issues of inadequate feature extraction, complicated computation, and low recognition accuracy under varied working conditions in conventional fault detection methods. First of all, the Markov transfer field (MTF) is used to transform the bearing vibration signal into a two-dimensional feature graph with time correlation. Secondly, taking advantage of the simplification of Ghost convolution calculation, GhostCNN is constructed. Then, a MDAM is designed, which makes the network fully capture the feature information from the two dimensions of channel and space, and makes the network pay attention to the feature space information effectively while realizing the interdependence between the feature channels, and construct the MDAM-GhostCNN model. Finally, the MTF two-dimensional feature map is input into the MDAM-GhostCNN model for training and output diagnosis results. Experimental verification and noise processing were performed on the bearing data sets from Jiang Nan University (JNU) and Case Western Reserve University. The results show that under variable working conditions, the constructed model has higher recognition accuracy, noise immunity and generalization performance.

     

  • loading
  • [1]
    HAN T, LIU C, YANG W G, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. doi: 10.1016/j.isatra.2019.08.012
    [2]
    HE S Y, HU D Y, YU G, et al. Trackside acoustic detection of axle bearing fault using wavelet domain moving beamforming method[J]. Applied Acoustics, 2022, 195: 108851. doi: 10.1016/j.apacoust.2022.108851
    [3]
    HOU M X, SHI H T. Stator-winding incipient shorted-turn fault detection for motor system in motorized spindle using modified interval observers[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3505716.
    [4]
    LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [5]
    袁彩艳, 孙洁娣, 温江涛, 等. 多域信息融合结合改进残差密集网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(4): 200-208.

    YUAN C Y, SUN J D, WEN J T, et al. Bearing fault diagnosis based on information fusion and improved residual dense networks[J]. Journal of Vibration and Shock, 2022, 41(4): 200-208(in Chinese).
    [6]
    HOANG D T, KANG H J. A survey on deep lelarning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335. doi: 10.1016/j.neucom.2018.06.078
    [7]
    SCHOLARPEDIA G E H. Deep belief networks[J]. Scholarpedia the Peer-Reviewed Open-Access Encyclopedia, 2009, 4(5): 5947.
    [8]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
    [9]
    XU Y, LI Z X, WANG S Q, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169: 108502. doi: 10.1016/j.measurement.2020.108502
    [10]
    ZHANG Z Q, YANG Q Y, ZI Y Y. Multi-scale and multi-pooling sparse filtering: a simple and effective representation learning method for intelligent fault diagnosis[J]. Neurocomputing, 2021, 451: 138-151. doi: 10.1016/j.neucom.2021.04.066
    [11]
    CHEN Z Y, MAURICIO A, LI W H, et al. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J]. Mechanical Systems and Signal Processing, 2020, 140: 106683. doi: 10.1016/j.ymssp.2020.106683
    [12]
    XU Z F, LI C, YANG Y. Fault diagnosis of rolling bearing of wind turbines based on the variational mode decomposition and deep convolutional neural networks[J]. Applied Soft Computing, 2020, 95: 106515. doi: 10.1016/j.asoc.2020.106515
    [13]
    YE M Y, YAN X A, CHEN N, et al. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023, 202: 109143.
    [14]
    刘俊锋, 俞翔, 万海波, 等. 基于 MFMD 和 Transformer-CNN 的滚动轴承故障诊断方法[J]. 航空动力学报, 2023, 38(6): 1446-1456.

    LIU J F, YU X, WAN H B, et al. Fault diagnosis method of rolling bearing using MFMD and Transformer-CNN[J]. Journal of Aerospace Power, 2023, 38(6): 1446-1456(in Chinese) .
    [15]
    FU W L, JIANG X H, LI B L, et al. Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique[J]. Measurement Science and Technology, 2023, 34(4): 045005. doi: 10.1088/1361-6501/acabdb
    [16]
    金江涛, 许子非, 李春, 等. 基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断[J]. 振动与冲击, 2022, 41(17): 160-169.

    JIN J T, XU Z F, LI C, et al. Fault diagnosis of rolling bearing based on CCNN-BiLSTMN method[J]. Journal of Vibration and Shock, 2022, 41(17): 160-169(in Chinese).
    [17]
    MAO G, ZHANG Z Z, QIAO B, et al. Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions[J]. Entropy, 2022, 24(1): 119. doi: 10.3390/e24010119
    [18]
    WANG M J, WANG W J, ZHANG X N, et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy, 2022, 24(6): 751. doi: 10.3390/e24060751
    [19]
    HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1577-1586.
    [20]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [21]
    HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 603-612.
    [22]
    XU G W, LIU M, JIANG Z F, et al. Online fault diagnosis method based on transfer convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 509-520. doi: 10.1109/TIM.2019.2902003
    [23]
    Case Western Reserve University. Case Western Reserve University bearing data[EB/OL]. (2018-05-22) [2023-04-28]. http://gitcode.com/open-source-toolkit/1cd2d/?utm_source=tools_gitcode&index=bottom&type=card&webUrl.
    [24]
    SONG X D, CONG Y Y, SONG Y F, et al. A bearing fault diagnosis model based on CNN with wide convolution kernels[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(8): 4041-4056. doi: 10.1007/s12652-021-03177-x
    [25]
    HAO X Y, ZHENG Y, LU L, et al. Research on intelligent fault diagnosis of rolling bearing based on improved deep residual network[J]. Applied Sciences, 2021, 11(22): 10889. doi: 10.3390/app112210889
    [26]
    刘恒畅, 姚德臣, 杨建伟, 等. 基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(10): 95-102.

    LIU H C, YAO D C, YANG J W, et al. Fault diagnosis of rolling bearings based on multi-branch deep separable convolutional neural networks[J]. Vibration and Shock, 2021, 40(10): 95-102(in Chinese) .
    [27]
    吴晨芳, 杨世锡, 黄海舟, 等. 一种基于改进的LeNet-5模型滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(12): 55-61.

    WU C F, YANG S X, HUANG H Z, et al. An improved fault diagnosis method of rolling bearings based on LeNet-5[J]. Journal of Vibration and Shock, 2021, 40(12): 55-61(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(468) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return