Volume 51 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0180
Citation: MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0180

Directed interactive topology optimization design for multi-agent affine formation maneuver control

doi: 10.13700/j.bh.1001-5965.2023.0180
Funds:

National Natural Science Foundation of China (61933010) 

More Information
  • Corresponding author: E-mail:zhangdong@nwpu.edu.cn
  • Received Date: 14 Apr 2023
  • Accepted Date: 10 Aug 2023
  • Available Online: 08 Sep 2023
  • Publish Date: 05 Sep 2023
  • This paper investigated the directed interactive topology optimization design problem for multi-agent affine formation maneuver control. Firstly, by considering the optimization indexes such as information interaction cost and energy consumption during information spreading, a directed topology optimization model for affine formation maneuver was established, including topology structure construction and weight allocation. Secondly, in view of the topological structure construction for affine formation maneuver, a directed k-rooted graph detection method was proposed, which could realize the solution of d + 1-rooted constraint for directed information interaction topology. Then, an improved NSGA-II-based topology structure construction optimization algorithm was designed. Finally, a formation of seven agents in two-dimensional space was taken as an example for simulation verification. The results show that the improved NSGA-II-based topology structure construction optimization algorithm has better optimization effects. It can effectively provide a variety of feasible directed interactive topologies for affine formation maneuver control, and the generated interactive topology can meet the requirements of a directed d + 1-rooted graph.

     

  • loading
  • [1]
    DONG X W, HU G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies[J]. Automatica, 2016, 73: 47-55. doi: 10.1016/j.automatica.2016.06.024
    [2]
    LIN Z Y, DING W, YAN G F, et al. Leader–follower formation via complex Laplacian[J]. Automatica, 2013, 49(6): 1900-1906. doi: 10.1016/j.automatica.2013.02.055
    [3]
    LIN Z Y, WANG L L, CHEN Z Y, et al. Necessary and sufficient graphical conditions for affine formation control[J]. IEEE Transactions on Automatic Control, 2015, 61(10): 2877-2891.
    [4]
    HAN Z M, WANG L L, LIN Z Y, et al. Formation control with size scaling via a complex Laplacian-based approach[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2348-2359. doi: 10.1109/TCYB.2015.2477107
    [5]
    FANG X, LI X L, XIE L H. Distributed formation maneuver control of multiagent systems over directed graphs[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8201-8212. doi: 10.1109/TCYB.2020.3044581
    [6]
    ZHAO S Y. Affine formation maneuver control of multiagent systems[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4140-4155. doi: 10.1109/TAC.2018.2798805
    [7]
    XU Y, ZHAO S Y, LUO D L, et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118: 109004. doi: 10.1016/j.automatica.2020.109004
    [8]
    XU Y, LUO D L, YOU Y C, et al. Affine transformation based formation maneuvering for discrete-time directed networked systems[J]. Science China Technological Sciences, 2020, 63(1): 73-85. doi: 10.1007/s11431-018-9456-0
    [9]
    CHEN L M, MEI J, LI C J, et al. Distributed leader–follower affine formation maneuver control for high-order multiagent systems[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4941-4948. doi: 10.1109/TAC.2020.2986684
    [10]
    XU Y, LUO D L, LI D Y, et al. Affine formation control for heterogeneous multi-agent systems with directed interaction networks[J]. Neurocomputing, 2019, 330: 104-115. doi: 10.1016/j.neucom.2018.11.023
    [11]
    XU Y, LUO D L, LI D Y, et al. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2679-2693. doi: 10.1016/j.cja.2019.04.016
    [12]
    XU Y, LI D Y, LUO D L, et al. Affine formation maneuver tracking control of multiple second-order agents with time-varying delays[J]. Science China Technological Sciences, 2019, 62(4): 665-676. doi: 10.1007/s11431-018-9328-2
    [13]
    LUO Z X, ZHANG P Y, DING X J, et al. Adaptive affine formation maneuver control of second-order multi-agent systems with disturbances[C]// 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE Press, 2020: 1071-1076.
    [14]
    CHANG Z Z, WANG J J, LI Z K. Fully distributed event-triggered affine formation maneuver control over directed graphs[J]. IFAC-PapersOnLine, 2022, 55(3): 178-183. doi: 10.1016/j.ifacol.2022.05.031
    [15]
    YANG Q K, CAO M, FANG H, et al. Constructing universally rigid tensegrity frameworks with application in multiagent formation control[J]. IEEE Transactions on Automatic Control, 2018, 64(1): 381-388.
    [16]
    XIAO F, YANG Q K, ZHAO X Y, et al. A framework for optimized topology design and leader selection in affine formation control[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 8627-8634. doi: 10.1109/LRA.2022.3188883
    [17]
    YANG J Y, XIAO F, CHEN T W. Formation tracking of nonholonomic systems on the special euclidean group under fixed and switching topologies: an affine formation strategy[J]. SIAM Journal on Control and Optimization, 2021, 59(4): 2850-2874. doi: 10.1137/20M1328130
    [18]
    MONDAL S, TSOURDOS A. Optimal topology for consensus using genetic algorithm[J]. Neurocomputing, 2020, 404: 41-49. doi: 10.1016/j.neucom.2020.04.107
    [19]
    崔亚妮, 任佳, 杜文才, 等. 多无人船通信网络拓扑优化控制算法[J]. 控制理论与应用, 2016, 33(12): 1639-1649.

    CUI Y N, REN J, DU W C, et al. Network topology optimization control algorithm for multiple unmanned surface vehicle[J]. Control Theory & Applications, 2016, 33(12): 1639-1649(in Chinese).
    [20]
    谷晓燕, 陈亮, 邓香平. 无人机编队信息交互拓扑多目标优化[J]. 电光与控制, 2022, 29(9): 27-31,52.

    GU X Y, CHEN L, DENG X P. Multi-objective optimization of UAV formation information interaction topology[J]. Electronics Optics & Control, 2022, 29(9): 27-31,52(in Chinese).
    [21]
    邦詹森 J, 古廷 G Z. 有向图的理论、算法及其应用[M]. 姚兵, 张忠辅, 译. 北京: 科学出版社, 2009.

    BANG-JENSEN J, GUTIN G Z. Digraphs theory, algorithms and applications[M]. YAO B, ZHANG Z F translated. Beijing: Science Press, 2009(in Chinese).
    [22]
    HONG H, KIM B J, CHOI M Y, et al. Factors that predict better synchronizability on complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6 Pt 2): 067105.
    [23]
    岳彩通, 梁静, 瞿博阳, 等. 多模态多目标优化综述[J]. 控制与决策, 2021, 36(11): 2577-2588.

    YUE C T, LIANG J, QU B Y, et al. A survey on multimodal multiobjective optimization[J]. Control and Decision, 2021, 36(11): 2577-2588(in Chinese).
    [24]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [25]
    DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
    [26]
    DENG W, ZHANG X X, ZHOU Y Q, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems[J]. Information Sciences, 2022, 585: 441-453. doi: 10.1016/j.ins.2021.11.052
    [27]
    ZHOU A M, ZHANG Q F, JIN Y C. Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1167-1189. doi: 10.1109/TEVC.2009.2021467
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views(418) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return