| Citation: | LEI C L,JIAO M X,FAN G F,et al. Fault diagnosis method of rolling bearings based on SSA-IWT-EMD[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1152-1162 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0174 |
Wavelet threshold denoising is insufficient, and feature frequency extraction of empirical mode decomposition (EMD) is unclear. To address these issues, a fault diagnosis method of rolling bearings based on sparrow search algorithm - improved wavelet threshold-EMD (SSA-IWT-EMD) was proposed. Firstly, two adjustment factors were introduced, and an IWT function was presented to overcome the shortcomings of traditional soft and hard thresholds. The SSA was used to globally optimize the parameters of the IWT to reduce the noise of rolling bearing signals. Secondly, a comprehensive index
| [1] |
RAI A, UPADHYAY S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International, 2016, 96: 289-306. doi: 10.1016/j.triboint.2015.12.037
|
| [2] |
葛兴来, 邹丹. 多层降噪技术及Hilbert变换的轴承故障诊断方法[J]. 电机与控制学报, 2020, 24(8): 9-17.
GE X L, ZOU D. Bearing fault diagnosis method of multi-layer denoising technologies and Hilbert transformation[J]. Electric Machines and Control, 2020, 24(8): 9-17(in Chinese).
|
| [3] |
SHAO R P, HU W T, LI J. Multi-fault feature extraction and diagnosis of gear transmission system using time-frequency analysis and wavelet threshold de-noising based on EMD[J]. Shock and Vibration, 2013, 20(4): 763-780. doi: 10.1155/2013/286461
|
| [4] |
王普, 李天垚, 高学金, 等. 分层自适应小波阈值轴承故障信号降噪方法[J]. 振动工程学报, 2019, 32(3): 548-556.
WANG P, LI T Y, GAO X J, et al. Bearing fault signal denoising method of hierarchical adaptive wavelet threshold function[J]. Journal of Vibration Engineering, 2019, 32(3): 548-556(in Chinese).
|
| [5] |
CUI H Y, QIAO Y Y, YIN Y M, et al. An investigation on early bearing fault diagnosis based on wavelet transform and sparse component analysis[J]. Structural Health Monitoring, 2017, 16(1): 39-49. doi: 10.1177/1475921716661310
|
| [6] |
CHEN B J, SHEN B M, CHEN F F, et al. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing[J]. Measurement, 2019, 131: 400-411. doi: 10.1016/j.measurement.2018.07.043
|
| [7] |
崔玲丽, 高立新, 殷海晨, 等. 基于第二代小波的复合故障诊断方法研究[J]. 中国机械工程, 2009, 20(4): 442-446. doi: 10.3321/j.issn:1004-132X.2009.04.015
CUI L L, GAO L X, YIN H C, et al. Research on composite fault diagnosis method based on the second generation wavelet[J]. China Mechanical Engineering, 2009, 20(4): 442-446(in Chinese). doi: 10.3321/j.issn:1004-132X.2009.04.015
|
| [8] |
王志刚, 李友荣, 李方. 基于谐波小波分析的故障诊断方法研究[J]. 振动与冲击, 2006, 25(2): 125-128. doi: 10.3969/j.issn.1000-3835.2006.02.032
WANG Z G, LI Y R, LI F. Fault diagnosis method based on harmonic wavelet analysis[J]. Journal of Vibration and Shock, 2006, 25(2): 125-128(in Chinese). doi: 10.3969/j.issn.1000-3835.2006.02.032
|
| [9] |
张晓峰, 李功燕. 应用小波分析提取故障诊断信号的特定频段[J]. 振动与冲击, 2004, 23(4): 47-50. doi: 10.3969/j.issn.1000-3835.2004.04.011
ZHANG X F, LI G Y. Extraction of fault diagnosis signal’s frequency band with wavelet analysis[J]. Journal of Vibration and Shock, 2004, 23(4): 47-50(in Chinese). doi: 10.3969/j.issn.1000-3835.2004.04.011
|
| [10] |
邓飞跃, 强亚文, 杨绍普, 等. 一种自适应频率窗经验小波变换的滚动轴承故障诊断方法[J]. 西安交通大学学报, 2018, 52(8): 22-29. doi: 10.7652/xjtuxb201808004
DENG F Y, QIANG Y W, YANG S P, et al. A fault diagnosis method of rolling element bearings with adaptive frequency window empirical wavelet transform[J]. Journal of Xi’an Jiaotong University, 2018, 52(8): 22-29(in Chinese). doi: 10.7652/xjtuxb201808004
|
| [11] |
TUERXUN W, XU C, GUO H Y, et al. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE Access, 2021, 9: 69307-69315. doi: 10.1109/ACCESS.2021.3075547
|
| [12] |
REN Y, ZHANG L L, CHEN J T, et al. Noise reduction study of pressure pulsation in pumped storage units based on sparrow optimization VMD combined with SVD[J]. Energies, 2022, 15(6): 2073. doi: 10.3390/en15062073
|
| [13] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193
|
| [14] |
KESHTAN M N, NOURI KHAJAVI M. Bearings fault diagnosis using vibrational signal analysis by EMD method[J]. Research in Nondestructive Evaluation, 2016, 27(3): 155-174. doi: 10.1080/09349847.2015.1103921
|
| [15] |
丛晓妍, 王增才, 王保平, 等. 基于 EMD 与峭度滤波的煤岩界面识别[J]. 振动、测试与诊断, 2015, 35(5): 950-954.
CONG X Y, WANG Z C, WANG B P, et al. Identification of coal-rock interface based on EMD and kurtosis filtering[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5): 950-954(in Chinese).
|
| [16] |
郭俊超, 甄冬, 孟召宗, 等. 基于WAEEMD和MSB的滚动轴承故障特征提取[J]. 中国机械工程, 2021, 32(15): 1793-1800. doi: 10.3969/j.issn.1004-132X.2021.15.004
GUO J C, ZHEN D, MENG Z Z, et al. Feature extraction of rolling bearings based on WAEEMD and MSB[J]. China Mechanical Engineering, 2021, 32(15): 1793-1800(in Chinese). doi: 10.3969/j.issn.1004-132X.2021.15.004
|
| [17] |
DENG C X, CHEN X X, LI S Q, et al. The improved wavelet threshold function and its application[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(7): 79-92. doi: 10.14257/ijsip.2016.9.7.08
|
| [18] |
ZHANG Y, DING W F, PAN Z F, et al. Improved wavelet threshold for image de-noising[J]. Frontiers in Neuroscience, 2019, 13: 39. doi: 10.3389/fnins.2019.00039
|
| [19] |
MO F, MO Q, CHEN Y Y, et al. Wavelet quant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis[J]. BMC Bioinformatics, 2010, 11: 219. doi: 10.1186/1471-2105-11-219
|
| [20] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|
| [21] |
张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3): 129-138. doi: 10.3901/JME.2015.03.129
ZHANG L, XIONG G L, HUANG W Y. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3): 129-138(in Chinese). doi: 10.3901/JME.2015.03.129
|
| [22] |
齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用[J]. 振动与冲击, 2020, 39(21): 140-150.
QI Y S, FAN J, LI Y T, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearings[J]. Journal of Vibration and Shock, 2020, 39(21): 140-150(in Chinese).
|
| [23] |
HAN X M, XU J, SONG S N, et al. Crack fault diagnosis of vibration exciter rolling bearing based on genetic algorithm–optimized Morlet wavelet filter and empirical mode decomposition[J]. International Journal of Distributed Sensor Networks, 2022, 18(8): 155013292211145.
|