Volume 51 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
WANG D W,LIU W,FANG J,et al. Low illumination image enhancement algorithm for UAV aerial photography with color consistency[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1096-1106 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0172
Citation: WANG D W,LIU W,FANG J,et al. Low illumination image enhancement algorithm for UAV aerial photography with color consistency[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1096-1106 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0172

Low illumination image enhancement algorithm for UAV aerial photography with color consistency

doi: 10.13700/j.bh.1001-5965.2023.0172
Funds:

Youth Fund of the National Natural Science Foundation of China (62201454); Shaanxi Provincial International Science and Technology Cooperation Plan (2023-GHYB-04) 

More Information
  • Corresponding author: E-mail:wangdianwei@xupt.edu.cn
  • Received Date: 10 Apr 2023
  • Accepted Date: 19 May 2023
  • Available Online: 30 Jun 2023
  • Publish Date: 27 Jun 2023
  • To address the issue of low brightness and poor visual effect of unmanned aerial vehicles (UAVs) in low illumination conditions, this paper established a low illumination dataset of UAV aerial photography and proposed a low illumination image enhancement algorithm for UAV aerial photography with color consistency. Firstly, in the brightness enhancement stage, this paper constructed a brightness enhancement network (BENet) to enhance the brightness of images and used the color network (CNet) module and the pyramid color embedding (PCE) module to combine the color features and content features of the images, which avoided color distortion in the enhanced image. In the image correction stage, this paper constructed a correction network based on domain transmission, trained the network with the self-built dataset, corrected the enhanced image after the first stage with the help of well-illuminated images, reduced the effect of noise on the image, and finally obtained the enhanced image. The experimental results show that the algorithm effectively avoids the problems of color distortion and noise amplification while enhancing the image brightness, and it outperforms other advanced algorithms in terms of objective indicators and improves the detection performance of the target detection algorithm at night.

     

  • loading
  • [1]
    李可夫, 钟汇才, 高兴宇, 等. 显著性引导的低光照人脸检测[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(3): 572-584.

    LI K F, ZHONG H C, GAO X Y, et al. Saliency guided low-light face detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 572-584(in Chinese).
    [2]
    PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368. doi: 10.1016/S0734-189X(87)80186-X
    [3]
    LAND E H. The Retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. doi: 10.1038/scientificamerican1277-108
    [4]
    GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.
    [5]
    WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[EB/OL]. (2018-08-14)[2023-04-01]. http://arxiv.org/abs/1808.04560v1.
    [6]
    ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640.
    [7]
    ZHANG Y H, GUO X J, MA J Y, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013-1037. doi: 10.1007/s11263-020-01407-x
    [8]
    LV F F, LU F, WU J H, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the British Machine Vision Conference. [S. l. ]: BMVC, 2018.
    [9]
    孙帮勇, 赵兴运, 吴思远, 等. 基于移位窗口多头自注意力U型网络的低照度图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3399-3408.

    SUN B Y, ZHAO X Y, WU S Y, et al. Low-light image enhancement method based on shifted window multi-head self-attention U-shaped network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3399-3408(in Chinese).
    [10]
    XU K, YANG X, YIN B C, et al. Learning to restore low-light images via decomposition-and-enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2278-2287.
    [11]
    张雅荔, 李文元, 李昌禄, 等. 融合注意力引导的多尺度低照度图像增强方法[J]. 西安电子科技大学学报, 2023, 50(1): 129-136.

    ZHANG Y L, LI W Y, LI C L, et al. Method for enhancement of the multi-scale low-light image by combining an attention guidance[J]. Journal of Xidian University, 2023, 50(1): 129-136(in Chinese).
    [12]
    JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. doi: 10.1109/TIP.2021.3051462
    [13]
    向森, 王应锋, 邓慧萍, 等. 基于双重迭代的零样本低照度图像增强[J]. 电子与信息学报, 2022, 44(10): 3379-3388.

    XIANG S, WANG Y F, DENG H P, et al. Zero-shot learning for low-light image enhancement based on dual iteration[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3379-3388(in Chinese).
    [14]
    王殿伟, 刘旺, 房杰, 等. 受生物视觉启发的无人机航拍低照度图像增强算法[J]. 西北工业大学学报, 2023, 41(1): 144-152. doi: 10.1051/jnwpu/20234110144

    WANG D W, LIU W, FANG J, et al. Enhancement algorithm of low illumination image for UAV images inspired by biological vision[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 144-152(in Chinese). doi: 10.1051/jnwpu/20234110144
    [15]
    JIN Y Y, YANG W H, TAN R T. Unsupervised night image enhancement: when layer decomposition meets light-effects suppression[EB/OL]. (2022-09-17)[2023-04-01]. http://arxiv.org/abs/2207.10564v2.
    [16]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [17]
    ZHANG Z, ZHENG H, HONG R C, et al. Deep color consistent network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 1889-1898.
    [18]
    ZHANG F, SHAO Y J, SUN Y S, et al. Unsupervised low-light image enhancement via histogram equalization prior[EB/OL]. (2021-11-03)[2023-04-01]. http://arxiv.org/abs/2112.01766v1.
    [19]
    DU W C, CHEN H, YANG H Y. Learning invariant representation for unsupervised image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 14471-14480.
    [20]
    WANG W J, WEI C, YANG W H, et al. GLADNet: low-light enhancement network with global awareness[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE Press, 2018: 751-755.
    [21]
    YANG W H, WANG S Q, FANG Y M, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 3060-3069.
    [22]
    LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[EB/OL]. (2021-03-01)[2023-04-01]. http://arxiv.org/abs/2103.00860v1.
    [23]
    WU W H, WENG J, ZHANG P P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 5891-5900.
    [24]
    MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 5627-5636.
    [25]
    AHN H, KEUM B, KIM D, et al. Adaptive local tone mapping based on Retinex for high dynamic range images[C]//Proceedings of the IEEE International Conference on Consumer Electronics. Piscataway: IEEE Press, 2013: 153-156.
    [26]
    MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/TIP.2012.2214050
    [27]
    MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
    [28]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [29]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the Computer Vision. Berlin: Springer, 2016: 21-37.
    [30]
    ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. (2021-03-18)[2023-04-01]. http://arxiv.org/abs/2010.04159v4.
    [31]
    LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42. doi: 10.1016/j.cviu.2018.10.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(718) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return