| Citation: | JIN B,LI S Y,LIU N N,et al. Kinematic absolute and relative orbit determination of Swarm satellites with heterogeneous orbits[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):409-418 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0039 |
Precise position information is the key to guaranteeing the successful implementation of low-earth-orbit satellite missions. The fixing of carrier phase ambiguities is important for the precise positioning and precise orbit determination of the GPS. The satellite-end hardware bias was corrected by using the observation specific bias product, and the receiver-end bias was eliminated by using the inter-satellite single difference to fix the single receiver ambiguity. Swarm satellite-borne measured data was used to carry out kinematic absolute and relative orbit determination, and the single-satellite ambiguity and double-difference ambiguity were fixed respectively to research the influence of fixing ambiguities on kinematic orbit determination accuracy. The results show that fixing ambiguities can significantly improve orbit determination accuracy. The standard deviation of the satellite laser ranging (SLR) residuals for the reduced dynamic single difference ambiguity resolution (SD-AR) orbit as a reference is better than 10 mm, which is improved by 20% compared with that of the floating solution. For kinematic absolute orbit determination, the orbit determination accuracy of the double difference ambiguity resolution (DD-AR) is improved by 26% compared with that of the floating solution, and the accuracy of the SD-AR is improved by 46%. For kinematic relative orbit determination, the baseline accuracy of the SD-AR and DD-AR of the Swarm-AC formation is improved by 40% compared with that of the floating solution. For the Swarm-AB and Swarm-BC formation satellites on heterogeneous orbits, observation data of specific periods are selected for relative orbit determination. Compared with the floating solution results, the baseline accuracy of the SD-AR is improved by 48%, and the accuracy of the DD-AR is improved by 54%. Fixing the carrier phase ambiguity in the kinematic orbit determination of low-earth-orbit satellites can significantly improve the accuracy of absolute and relative orbit determination.
| [1] |
KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. Delft: Delft University of Technology, 2006.
|
| [2] |
MONTENBRUCK O, HACKEL S, JÄGGI A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations[J]. Journal of Geodesy, 2018, 92(7): 711-726. doi: 10.1007/s00190-017-1090-2
|
| [3] |
MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking[J]. GPS Solutions, 2018, 22(3): 79. doi: 10.1007/s10291-018-0746-6
|
| [4] |
MONTENBRUCK O, HACKEL S, WERMUTH M, et al. Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver[J]. Journal of Geodesy, 2021, 95(9): 109. doi: 10.1007/s00190-021-01563-z
|
| [5] |
JIN B, LI Y Q, JIANG K C, et al. GRACE-FO antenna phase center modeling and precise orbit determination with single receiver ambiguity resolution[J]. Remote Sensing, 2021, 13(21): 4204. doi: 10.3390/rs13214204
|
| [6] |
KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1): 21-31. doi: 10.1007/s10291-004-0123-5
|
| [7] |
JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10): 1612-1619. doi: 10.1016/j.asr.2007.03.012
|
| [8] |
ZHAO Q L, HU Z G, GUO J, et al. Precise relative orbit determination of twin GRACE satellites[J]. Geo-spatial Information Science, 2010, 13(3): 221-225. doi: 10.1007/s11806-010-0362-2
|
| [9] |
GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4
|
| [10] |
LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2): 135-149. doi: 10.1002/j.2161-4296.2009.tb01750.x
|
| [11] |
COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2): 123-135. doi: 10.1002/j.2161-4296.2010.tb01772.x
|
| [12] |
BERTIGER W, DESAI S D, HAINES B, et al. Single receiver phase ambiguity resolution with GPS data[J]. Journal of Geodesy, 2010, 84(5): 327-337. doi: 10.1007/s00190-010-0371-9
|
| [13] |
LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003. doi: 10.1007/s00190-012-0559-2
|
| [14] |
张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013.
ZHANG X H, LI P, ZUO X. Kinematic precise orbit determination based on ambiguity-fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013(in Chinese).
|
| [15] |
FRIIS-CHRISTENSEN E, LÜHR H, KNUDSEN D, et al. Swarm an Earth observation mission investigating geospace[J]. Advances in Space Research, 2008, 41(1): 210-216.
|
| [16] |
SIEG D, DIEKMANN F. Options for the further orbit evolution of the Swarm mission[C]//Proceedings of the Living Planet Symposium. The Netherlands: European Space Research and Technology Centre, 2016.
|
| [17] |
ZANGERL F, GRIESAUER F, SUST M, et al. SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation. Washington, D. C.: Institute of Navigation, 2014: 1459-1468.
|
| [18] |
VAN DEN IJSSEL J, ENCARNACÃO J A, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6): 1042-1055. doi: 10.1016/j.asr.2015.06.002
|
| [19] |
JÄGGI A, DAHLE C, ARNOLD D, et al. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Advances in Space Research, 2016, 57(1): 218-233. doi: 10.1016/j.asr.2015.10.035
|
| [20] |
ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3): 1275-1284. doi: 10.1007/s10291-017-0611-z
|
| [21] |
MAO X, VISSER P N A M, VAN DEN IJSSEL J. High-dynamic baseline determination for the Swarm constellation[J]. Aerospace Science and Technology, 2019, 88: 329-339. doi: 10.1016/j.ast.2019.03.031
|
| [22] |
张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11): 1278-1284. doi: 10.11947/j.AGCS.2016.20160284
ZHANG B B, NIE L J, WU T T, et al. Centimeter precise orbit determination for SWARM satellite via reduced-dynamic method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1278-1284(in Chinese). doi: 10.11947/j.AGCS.2016.20160284
|
| [23] |
张兵兵, 牛继强, 王正涛, 等. Swarm系列卫星非差运动学厘米级精密定轨[J]. 测绘学报, 2021, 50(1): 27-36. doi: 10.11947/j.AGCS.2021.20190165
ZHANG B B, NIU J Q, WANG Z T, et al. Centimeter precise orbit determination for the Swarm satellites via undifferenced kinematic method[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 27-36(in Chinese). doi: 10.11947/j.AGCS.2021.20190165
|
| [24] |
BLEWITT G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10187-10203. doi: 10.1029/JB094iB08p10187
|
| [25] |
WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Advances in the Astronautical Sciences, 1992, 76(2): 1647-1660.
|
| [26] |
MELBOURNE W. The case for ranging in GPS based geodetic systems[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C.: NOAA, 1985: 373-386.
|
| [27] |
WÜBBENA G. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C. : NOAA, 1985: 403-412.
|
| [28] |
MAO X, VISSER P N A M, VAN DEN IJSSEL J. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination[J]. Acta Astronautica, 2018, 146: 399-408. doi: 10.1016/j.actaastro.2018.03.009
|
| [29] |
SIEMES C. Swarm instrument positions related to GPS receiver data processing: ESA-EOPSM-SWRM-TN-3559[R]. The Netherlands: European Space Research and Technology Centre, 2019.
|
| [30] |
LIU J N, GE M R. PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609. doi: 10.1007/BF02899825
|
| [31] |
SHAKO R, FÖRSTE C, ABRIKOSOV O, et al. EIGEN-6C: A high-resolution global gravity combination model including GOCE data[M]. Berlin: Springer, 2014: 155-161.
|
| [32] |
PETIT G, LUZUM B. IERS conventions 2010, IERS technical note: No. 36[R]. Frankfurt: Federal Agency for Cartography and Geodesy, 2010.
|
| [33] |
LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415.
|
| [34] |
DESAI S D. Observing the pole tide with satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2002, 107: 1-13.
|
| [35] |
BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1. doi: 10.1051/swsc/2015001
|
| [36] |
PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in Space Research, 2002, 30(2): 135-143. doi: 10.1016/S0273-1177(02)00277-6
|
| [37] |
GUO X, GENG J H, CHEN X Y, et al. Enhanced orbit determination for formation-flying satellites through integrated single-and double-difference GPS ambiguity resolution[J]. GPS Solutions, 2019, 24(1): 1-14.
|