Volume 51 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
LU X,SUN Y N,TANG J,et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):478-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0029
Citation: LU X,SUN Y N,TANG J,et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):478-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0029

Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation

doi: 10.13700/j.bh.1001-5965.2023.0029
Funds:

National Natural Science Foundation of China (U2033208); National Natural Science Foundation of China Civil Aviation Joint Key Project (U2233212) 

More Information
  • Corresponding author: E-mail:tangjie_cauc@163.com
  • Received Date: 31 Jan 2023
  • Accepted Date: 07 Apr 2023
  • Available Online: 28 Apr 2023
  • Publish Date: 21 Apr 2023
  • To explore the influence of the restraint relationship between the wheel-holding mechanism and the nose landing gear wheel on the kinematic characteristics of the towing system, this paper established the relationship between the radial force and radial contact deformation of the aircraft nose landing gear wheel based on the Winkler contact model. With the Douglas TBL-180 towbarless aircraft tractor and B737-800 passenger aircraft as reference objects, the kinematic model of the tractor-aircraft system was established, and under the different constraint relationships between the wheel-holding mechanism and the nose landing gear wheel, the change law of the acceleration bias of the tractor and the aircraft under various operating conditions was explored. The results show that the radial force of the nose landing gear wheel has a strong nonlinear relationship with the radial contact deformation, which greatly influences the motion characteristics of the towing system. Under the acceleration and braking states, the increase in the constraint force at both ends of the nose landing gear wheel will reduce the acceleration bias of the tractor and the aircraft. However, under the acceleration state, the increase in the constraint force is the main influencing factor for the decrease in the acceleration bias, and under the braking state, the constraint force has little effect on the acceleration bias when increasing to a certain value (about 10 000 N).

     

  • loading
  • [1]
    许致华, 焦永涛, 洪振宇. 新型无杆飞机牵引车夹持机构[J]. 起重运输机械, 2012, 443(1): 76-80. doi: 10.3969/j.issn.1001-0785.2012.01.024

    XU Z H, JIAO Y T, HONG Z Y. Clamping mechanism of a new type of rodless aircraft tractor[J]. Hoisting and Conveying Machinery, 2012, 443(1): 76-80(in Chinese). doi: 10.3969/j.issn.1001-0785.2012.01.024
    [2]
    洪振宇, 许致华, 张志旭, 等. 无杆飞机牵引车机轮举升机构的概念设计与尺度综合[J]. 机械设计, 2013, 30(11): 47-52. doi: 10.3969/j.issn.1001-2354.2013.11.010

    HONG Z Y, XU Z H, ZHANG Z X, et al. Conceptual design and dimensional synthesis of nosewheel lifting mechanism in a towbarless aircraft towing tractor[J]. Journal of Machine Design, 2013, 30(11): 47-52(in Chinese). doi: 10.3969/j.issn.1001-2354.2013.11.010
    [3]
    宋贺铮, 于鸿彬. 新型飞机牵引车夹持举升机构运动学分析[J]. 起重运输机械, 2019, 527(1): 119-123. doi: 10.3969/j.issn.1001-0785.2019.01.012

    SONG H Z, YU H B. Kinematics analysis of the clamping and lifting mechanism of new aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 527(1): 119-123(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.01.012
    [4]
    金嘉琦, 戚基艳, 高雪, 等. 无杆式飞机牵引车夹持举升机构设计[J]. 起重运输机械, 2019, 544(18): 53-58. doi: 10.3969/j.issn.1001-0785.2019.18.026

    JIN J Q, QI J Y, GAO X, et al. Design of clamping and lifting mechanism for towbarless aircraft tractor[J]. Hoisting and Conveying Machinery, 2019, 544(18): 53-58(in Chinese). doi: 10.3969/j.issn.1001-0785.2019.18.026
    [5]
    XING Z W, LV Y, LI J H. Finite element analysis and structure design for chassis of aircraft towbarless tractor[J]. Advanced Materials Research, 2011, 328-330: 690-694. doi: 10.4028/www.scientific.net/AMR.328-330.690
    [6]
    朱敏, 刘晖, 陈舒文. 凹坑路面条件下飞机地面牵引载荷的仿真分析[J]. 机械制造与自动化, 2014, 43(2): 94-98. doi: 10.3969/j.issn.1671-5276.2014.02.031

    ZHU M, LIU H, CHEN S W. Simulation analysis of aircraft ground traction load under pit road conditions[J]. Machine Building & Automation, 2014, 43(2): 94-98(in Chinese). doi: 10.3969/j.issn.1671-5276.2014.02.031
    [7]
    解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020, 356(10): 1-5. doi: 10.3969/j.issn.1001-3997.2020.10.001

    XIE B M, ZHU J W, WANG W, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design & Manufacture, 2020, 356(10): 1-5(in Chinese). doi: 10.3969/j.issn.1001-3997.2020.10.001
    [8]
    沈圳, 刘晖, 母梦新. 飞机无杆牵引安全技术研究[J]. 南京亚洲成人在线一二三四五六区学报, 2019, 51(6): 819-827.

    SHEN Z, LIU H, MU M X. Aircraft towbarless traction safety technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 819-827(in Chinese).
    [9]
    王能建, 周丽杰, 刘红博. 甲板上牵引车-直升机系统的稳定性控制[J]. 上海交通大学学报, 2012, 46(7): 1146-1152.

    WANG N J, ZHOU L J, LIU H B. Study on stability control for tractor-helicopter system on deck[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7): 1146-1152(in Chinese).
    [10]
    YU M H, GONG X, FAN G W, et al. Trajectory planning and tracking for carrier aircraft-tractor system based on autonomous and cooperative movement[J]. Mathematical Problems in Engineering, 2020, 2020: 6531984.
    [11]
    LIU J, DONG X Z, WANG J Y, et al. A novel EPT autonomous motion control framework for an off-axle hitching tractor-trailer system with drawbar[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(2): 376-385.
    [12]
    JOHNSTON J S, SWENSON E D. Feasibility study of global-positioning-system-based aircraft-carrier flight-deck persistent monitoring system[J]. Journal of Aircraft, 2010, 47(5): 1624-1635. doi: 10.2514/1.C000220
    [13]
    戚基艳, 金嘉琦, 付景顺. 分布式驱动舰载机无杆式牵引车的驱动防滑[J]. 兵器装备工程学报, 2020, 41(9): 210-214. doi: 10.11809/bqzbgcxb2020.09.039

    QI J Y, JIN J Q, FU J S. Acceleration slip regulation of carrier-based aircraft towbarless tractor[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 210-214(in Chinese). doi: 10.11809/bqzbgcxb2020.09.039
    [14]
    陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11): 1794-1799. doi: 10.11990/jheu.201606075

    CHEN S W, LIU H, LI F H, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799(in Chinese). doi: 10.11990/jheu.201606075
    [15]
    MU M X, LIU H, CHEN D W. Analysis of effects on the load of nose landing gear by towbarless traction[C]//Proceedings of the IEEE 2nd International Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE Press, 2020: 762-768.
    [16]
    李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915.

    LI Y M, LI X Y, CHAI Y J, et al. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526915(in Chinese).
    [17]
    母梦新. 无杆牵引对民机前起落架的影响研究[D]. 南京: 南京亚洲成人在线一二三四五六区, 2021: 20-21.

    MU M X. Study on the influence of rodless traction on the nose landing gear of civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 20-21(in Chinese).
    [18]
    朱俊伟. 飞机无杆牵引车多工况牵引的动力学分析[D]. 天津: 中国民航大学, 2019: 14-19.

    ZHU J W. Dynamic analysis of aircraft towbarless tow vehicles under multi-operating conditions[D]. Tianjing: Civil Aviation University of China, 2019: 14-19(in Chinese).
    [19]
    沈圳. 飞机无杆牵引安全技术研究[D]. 南京: 南京亚洲成人在线一二三四五六区, 2019: 13-21.

    SHEN Z. Research on the safety technology of aircraft towbarless traction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 13-21(in Chinese).
    [20]
    朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计, 2020, 37(S1): 72-76.

    ZHU H , LI J F. Analysis on braking stability of towbarless towing vehicle under steering and braking[J]. Journal of Machine Design, 2020, 37(S1): 72-76(in Chinese).
    [21]
    LIU C S, ZHANG K, YANG L. Normal force-displacement relationship of spherical joints with clearances[J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(2): 160-167. doi: 10.1115/1.2162872
    [22]
    ZHU H J, ZHANG B Z, LV X, et al. Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J]. SAE International Journal of Advances and Current Practices in Mobility, 2022, 4(4): 1445-1453. doi: 10.4271/2022-01-0291
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(581) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return