Volume 51 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
WU W,XIAN Y,SU J,et al. A matching method based on improved SuperPoint and linear Transformer for optical and infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):340-348 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1022
Citation: WU W,XIAN Y,SU J,et al. A matching method based on improved SuperPoint and linear Transformer for optical and infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):340-348 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1022

A matching method based on improved SuperPoint and linear Transformer for optical and infrared images

doi: 10.13700/j.bh.1001-5965.2022.1022
Funds:

National Natural Science Foundation of China (62103432); China Postdoctoral Science Foundation (2022M721841) 

More Information
  • Corresponding author: E-mail:sp-li16@mails.tsinghua.edu.cn
  • Received Date: 29 Dec 2022
  • Accepted Date: 29 May 2023
  • Available Online: 15 Jan 2025
  • Publish Date: 08 Sep 2023
  • A deep learning matching algorithm based on improved SuperPoint and linear transformer was proposed to solve the problem of difficult matching and high mismatching rates between visible and infrared heterologous images. Firstly, based on the SuperPoint network structure, the algorithm introduced the idea of a feature pyramid to build a feature description branch and trained it based on the hinge loss function, so as to better learn the multi-scale deep features of visible and infrared images and increase the similarity of the image with correspondence points to the descriptor. In the feature matching module, SuperGlue was improved by adopting a linear transformer for aggregating features to obtain better matching results. Experiments conducted on multiple datasets demonstrate that the proposed method improves the matching precision and provides better matching performance in comparison with existing matching methods.

     

  • loading
  • [1]
    MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey[J]. International Journal of Computer Vision, 2021, 129(1): 23-79. doi: 10.1007/s11263-020-01359-2
    [2]
    ZITOVÁ B, FLUSSER J. Image registration methods: A survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000. doi: 10.1016/S0262-8856(03)00137-9
    [3]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [4]
    MA J Y, ZHAO J, MA Y, et al. Non-rigid visible and infrared face registration via regularized Gaussian fields criterion[J]. Pattern Recognition, 2015, 48(3): 772-784. doi: 10.1016/j.patcog.2014.09.005
    [5]
    YE Y X, SHAN J, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2941-2958. doi: 10.1109/TGRS.2017.2656380
    [6]
    CHEN Y J, ZHANG X W, ZHANG Y N, et al. Visible and infrared image registration based on region features and edginess[J]. Machine Vision and Applications, 2018, 29(1): 113-123. doi: 10.1007/s00138-017-0879-6
    [7]
    LI J Y, HU Q W, AI M Y. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 29: 3296-3310.
    [8]
    ARAR M, GINGER Y, DANON D, et al. Unsupervised multi-modal image registration via geometry preserving image-to-image translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 13407-13416.
    [9]
    PIELAWSKI N, WETZER E, ÖFVERSTEDT J, et al. CoMIR: Contrastive multimodal image representation for registration[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 1-21.
    [10]
    YI K M, TRULLS E, LEPETIT V, et al. LIFT: Learned invariant feature transform[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 467-483.
    [11]
    DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 337-33712.
    [12]
    LI K H, WANG L G, LIU L, et al. Decoupling makes weakly supervised local feature better[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 15817-15827.
    [13]
    SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: Learning feature matching with graph neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4937-4946.
    [14]
    SHI Y, CAI J X, SHAVIT Y, et al. ClusterGNN: Cluster-based coarse-to-fine graph neural network for efficient feature matching[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 12507-12516.
    [15]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
    [16]
    CUTURI M. Sinkhorn distance: Lightspeed computation of optimal transport[C]// Proceedings of Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2013: 1-9.
    [17]
    KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[C]//Proceedings of 2020 International Conference on Machine Learing (ICML). New York: ACM Press, 2020: 1-10.
    [18]
    DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net: a trainable CNN for joint description and detection of local features[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8084-8093.
    [19]
    QUAN D, WANG S, NING H Y, et al. Element-wise feature relation learning network for cross-spectral image patch matching[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3372-3386. doi: 10.1109/TNNLS.2021.3052756
    [20]
    RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery: A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34: 187-203. doi: 10.1016/j.jvcir.2015.11.002
    [21]
    ROCCO I, ARANDJELOVIC R, SIVIC J. Convolutional neural network architecture for geometric matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2553-2567. doi: 10.1109/TPAMI.2018.2865351
    [22]
    HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. New York: Cambridge University Press, 2004: 117-123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(551) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return