| Citation: | LI S T,JIN X P,SUN J,et al. LPI radar signal recognition based on high-order time-frequency spectrum features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):314-320 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0993 |
In view of the low recognition rate of traditional low probability of intercept (LPI) radar signal recognition algorithms under low signal-to-noise ratios, a radar signal recognition algorithm based on high-order time-frequency features was proposed. The proposed algorithm firstly obtained the time-frequency distribution of radar signals by time-frequency transform, and then the power calculation of the time-frequency spectrum was done to obtain the high-order time-frequency image of the signal. The gray gradient co-generation matrix and pseudo-Zernike features of the time-frequency image were extracted and formed into a joint feature vector, and finally, the classification recognition of the radar signal was realized by the support vector machine (SVM). The experimental results show that the overall recognition accuracy of the proposed algorithm can reach more than 95% for eight typical radar signals when the signal-to-noise ratio is −6 dB.
| [1] |
孙艺聪, 田润澜, 董会旭, 等. 基于SAMME+ResNet的多相码信号识别方法[J]. 系统工程与电子技术, 2020, 42(10): 2239-2245. doi: 10.3969/j.issn.1001-506X.2020.10.12
SUN Y C, TIAN R L, DONG H X, et al. Polyphase code signal recognition method based on SAMME+ResNet[J]. Systems Engineering and Electronics, 2020, 42(10): 2239-2245(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.10.12
|
| [2] |
徐卓君, 杨雯婷, 杨承志, 等. 雷达脉内调制识别的改进残差神经网络算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1454-1460.
XU Z J, YANG W T, YANG C Z, et al. Improved residual neural network algorithm for radar intrapulse modulation classification[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1454-1460(in Chinese).
|
| [3] |
徐帅, 刘鲁涛. P-Net框架下的小样本雷达信号识别算法[J]. 哈尔滨工程大学学报, 2022, 43(5): 739-744. doi: 10.11990/jheu.202012001
XU S, LIU L T. Small sample radar signal recognition algorithm under the P-Net framework[J]. Journal of Harbin Engineering University, 2022, 43(5): 739-744(in Chinese). doi: 10.11990/jheu.202012001
|
| [4] |
万海东, 蔡伟, 刘则林. 基于图像化特征的雷达信号个体识别与工作模式识别方法[J]. 空天预警研究学报, 2022, 36(2): 79-84. doi: 10.3969/j.issn.2097-180X.2022.02.001
WAN H D, CAI W, LIU Z L. Method of individual recognition and operating mode recognition of radar signal based on image features[J]. Journal of Air & Space Early Warning Research, 2022, 36(2): 79-84(in Chinese). doi: 10.3969/j.issn.2097-180X.2022.02.001
|
| [5] |
白航, 赵拥军, 胡德秀, 等. 基于Choi-Williams时频图像特征的雷达辐射源识别[J]. 数据采集与处理, 2012, 27(4): 480-485. doi: 10.3969/j.issn.1004-9037.2012.04.014
BAI H, ZHAO Y J, HU D X, et al. Radar emitter recognition based on image feature of Choi-Williams time-frequency distribution[J]. Data Acquisition and Processing, 2012, 27(4): 480-485(in Chinese). doi: 10.3969/j.issn.1004-9037.2012.04.014
|
| [6] |
孟凡杰, 唐宏, 王义哲, 等. 基于时频图像纹理特征的雷达辐射源信号识别[J]. 弹箭与制导学报, 2017, 37(3): 152-156.
MENG F J, TANG H, WANG Y Z, et al. Radar emitter signal recognition based on texture feature of time-frequency image[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(3): 152-156(in Chinese).
|
| [7] |
刘歌, 张国毅, 汪洪艳. 基于特征融合的雷达信号脉内调制类型识别[J]. 航天电子对抗, 2016, 32(3): 36-41. doi: 10.3969/j.issn.1673-2421.2016.03.010
LIU G, ZHANG G Y, WANG H Y. Intra-pulse modulation recognition of radar signal based on features fusion[J]. Aerospace Electronic Warfare, 2016, 32(3): 36-41(in Chinese). doi: 10.3969/j.issn.1673-2421.2016.03.010
|
| [8] |
王功明, 陈世文, 黄洁, 等. 基于多重同步压缩变换的雷达辐射源分选识别[J]. 现代雷达, 2020, 42(3): 49-56.
WANG G M, CHEN S W, HUANG J, et al. Radar emitter sorting and recognition based on multi-synchrosqueezing transform[J]. Modern Radar, 2020, 42(3): 49-56(in Chinese).
|
| [9] |
关欣, 朱杭平, 张玉虎. 基于 FRFT 的雷达辐射源信号特征分析及提取[J]. 探测与控制学报, 2018, 40(2): 71-76.
GUAN X, ZHU H P, ZHANG Y H. Analysis and extraction of radar emitter signal feature based on fractional Fourier transform[J]. Journal of Detection and control, 2018, 40(2): 71-76(in Chinese).
|
| [10] |
苑军见, 陈世文, 刘智鑫, 等. 基于高次频谱对称 Holder 系数的雷达信号分选方法[J]. 信号处理, 2020, 36(10): 1775-1783.
YUAN J J, CHEN S W, LIU Z X, et al. Radar signal sorting method based on the symmetric holder coefficients of high-order spectrum[J]. Signal Processing, 2020, 36(10): 1775-1783(in Chinese).
|
| [11] |
肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43(8): 2300-2307. doi: 10.11999/JEIT200506
XIAO Y H, WANG L, GUO Y X. Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2300-2307(in Chinese). doi: 10.11999/JEIT200506
|
| [12] |
简川霞, 林子嘉, 杜美剑, 等. 基于特征融合与降维的印刷套准识别方法[J]. 包装工程, 2019, 40(21): 242-249.
JIAN C X, LIN Z J, DU M J, et al. Printing registration recognition method based on feature fusion and dimension reduction[J]. Packaging Engineering, 2019, 40(21): 242-249(in Chinese).
|
| [13] |
林龙, 王贤浪. 基于杂草算法优化的轴承时频谱图聚类识别研究[J]. 内燃机与配件, 2021(2): 117-120. doi: 10.3969/j.issn.1674-957X.2021.02.055
LIN L, WANG X L. A time-frequency image recognition method based on IWO-KFCM algorithm[J]. Internal Combustion Engine & Parts, 2021(2): 117-120(in Chinese). doi: 10.3969/j.issn.1674-957X.2021.02.055
|
| [14] |
陈后金, 许文达, 郝晓莉. 基于灰度-梯度共生矩阵的钢轨表面缺陷检测方法[J]. 北京交通大学学报, 2015, 39(2): 7-12. doi: 10.11860/j.issn.1673-0291.2015.02.002
CHEN H J, XU W D, HAO X L. Detection of rail track surface defects based on gray level-gradient co-occurrence matrix[J]. Journal of Beijing Jiaotong University, 2015, 39(2): 7-12(in Chinese). doi: 10.11860/j.issn.1673-0291.2015.02.002
|
| [15] |
杨棉绒, 牛丽平. 基于LGBM的Zernike特征选取及红外图像目标识别方法[J]. 红外与激光工程, 2022, 51(4): 415-420.
YANG M R, NIU L P. Zernike’s feature selection based on LGBM and identification methods of infrared image target[J]. Infrared and Laser Engineering, 2022, 51(4): 415-420(in Chinese).
|
| [16] |
NAILA S, JJ Y, YANG N, et al. A rapid recognition method for rice false smut based on HOG features and SVM classification[J]. Journal of Physics: Conference Series, 2020, 1576(1): 012018. doi: 10.1088/1742-6596/1576/1/012018
|
| [17] |
NIU Y T, SHANG Y, TIAN Y J. Multi-view SVM classification with feature selection[J]. Procedia Computer Science, 2019, 162: 405-412. doi: 10.1016/j.procs.2019.12.004
|