Volume 51 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
YAN S Q,YANG P,LIU W D,et al. Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):303-313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0984
Citation: YAN S Q,YANG P,LIU W D,et al. Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):303-313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0984

Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm

doi: 10.13700/j.bh.1001-5965.2022.0984
Funds:

National Natural Science Foundation of China (61703411) 

More Information
  • Corresponding author: E-mail:yyp_ing@163.com
  • Received Date: 12 Dec 2022
  • Accepted Date: 24 Mar 2023
  • Available Online: 15 Apr 2023
  • Publish Date: 12 Apr 2023
  • A multi-UAV cooperative path planning approach based on the self-destruction mechanism and game predatory sparrow search algorithm (GPSSA) is suggested to address the issues of high time requirement and problematic convergence. Firstly, a single UAV path planning model and a multi-UAV cooperative path planning model are established respectively by using the hierarchical planning idea, which is transformed into optimization problems. Then, the game predatory mechanism and self-destruction mechanism is proposed to improve the sparrow algorithm, prevent it from rapidly losing the diversity of the population, enhance the ability of the original algorithm to escape the attraction of local optimum, and make the search mode of the algorithm more flexible. Finally, the improved sparrow algorithm is used to solve the model. The outcomes of the simulation demonstrate how fast and accurately the GPSSA method can plan a path that satisfies the requirements, while also having superior algorithm robustness, convergence speed, and optimization accuracy.

     

  • loading
  • [1]
    贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. doi: 10.3969/j.issn.1001-506X.2021.01.13

    JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111(in Chinese). doi: 10.3969/j.issn.1001-506X.2021.01.13
    [2]
    LAVALLE S M, KUFFNER J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5): 378-400. doi: 10.1177/02783640122067453
    [3]
    ZHONG X Y, TIAN J, HU H S, et al. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment[J]. Journal of Intelligent & Robotic Systems, 2020, 99(1): 65-77.
    [4]
    ALMURIB H A F, NATHAN P T, KUMAR T N. Control and path planning of quadrotor aerial vehicles for search and rescue[C]// SICE Annual Conference. Piscataway: IEEE Press, 2011: 700-705.
    [5]
    王伟, 王华. 基于约束人工势场法的弹载飞行器实时避障航迹规划[J]. 航空动力学报, 2014, 29(7): 1738-1743.

    WANG W, WANG H. Real-time obstacle avoidance trajectory planning for missile borne air vehicle based on constrained artificial potential field method[J]. Journal of Aerospace Power, 2014, 29(7): 1738-1743(in Chinese).
    [6]
    CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47(6): 1407-1420. doi: 10.1080/00207721.2014.929191
    [7]
    SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382-18390. doi: 10.1109/ACCESS.2017.2746752
    [8]
    GALVEZ R L, DADIOS E P, BANDALA A A. Path planning for quadrotor UAV using genetic algorithm[C]// 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). Piscataway: IEEE Press, 2014: 1-6.
    [9]
    WANG X F, ZHAO H, HAN T, et al. A grey wolf optimizer using Gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem[J]. Applied Soft Computing, 2019, 78: 240-260. doi: 10.1016/j.asoc.2019.02.037
    [10]
    ZHANG C, ZHEN Z Y, WANG D B, et al. UAV path planning method based on ant colony optimization[C]// 2010 Chinese Control and Decision Conference. Piscataway: IEEE Press, 2010: 3790-3792.
    [11]
    PHUNG M D, HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing, 2021, 107: 107376. doi: 10.1016/j.asoc.2021.107376
    [12]
    PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms[J]. Neural Computing and Applications, 2022, 34(1): 153-170. doi: 10.1007/s00521-021-06569-4
    [13]
    BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171-1187. doi: 10.1109/OJCOMS.2021.3081996
    [14]
    NGUYEN K K, DUONG T Q, DO-DUY T, et al. 3D UAV trajectory and data collection optimisation via deep reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(4): 2358-2371. doi: 10.1109/TCOMM.2022.3148364
    [15]
    SHORAKAEI H, VAHDANI M, IMANI B, et al. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]. Robotica, 2016, 34(4): 823-836. doi: 10.1017/S0263574714001878
    [16]
    PEHLIVANOGLU Y V, PEHLIVANOGLU P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems[J]. Applied Soft Computing, 2021, 112: 107796. doi: 10.1016/j.asoc.2021.107796
    [17]
    SAEED R A, OMRI M, ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications, 2022, 34(12): 10133-10155. doi: 10.1007/s00521-022-06998-9
    [18]
    CHOI Y J, RAHIM T, RAMATRYANA I N A, et al. Improved CNN-based path planning for stairs climbing in autonomous UAV with LiDAR sensor[C]// 2021 International Conference on Electronics, Information, and Communication (ICEIC). Piscataway: IEEE Press, 2021: 1-7.
    [19]
    ZHANG D F, DUAN H B. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313: 229-246. doi: 10.1016/j.neucom.2018.06.032
    [20]
    韩统, 汤安迪, 周欢, 等. 基于 LASSA 算法的多无人机协同航迹规划方法[J]. 系统工程与电子技术, 2022, 44(1): 233-241.

    HAN T, TANG A D, ZHOU H, et al. Multi UAV cooperative path planning method based on Lassa algorithm[J] Systems Engineering and Electronic Technology, 2022, 44 (1): 233-241(in Chinese).
    [21]
    JAMSHIDI V, NEKOUKAR V, REFAN M H. Real time UAV path planning by parallel grey wolf optimization with align coefficient on CAN bus[J]. Cluster Computing, 2021, 24(3): 2495-2509. doi: 10.1007/s10586-021-03276-6
    [22]
    HE W J, QI X G, LIU L F. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning[J]. Applied Intelligence, 2021, 51(10): 7350-7364. doi: 10.1007/s10489-020-02082-8
    [23]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [24]
    闫少强, 杨萍, 朱东林, 等. 基于佳点集的改进麻雀搜索算法[J/OL]. 北京亚洲成人在线一二三四五六区学报: 1-13 [2022-03-14]. DOI: 10.13700/j.bh.1001-5965.2021.0730.

    YAN S Q, YANG P, ZHU D L, et al. Improved sparrow search algorithm based on good point set[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13 [2022-03-14]. DOI: 10.13700/j.bh.1001-5965.2021.0730(in Chinese).
    [25]
    YAN S Q, YANG P, ZHU D L, et al. Improved sparrow search algorithm based on iterative local search[J]. Computational Intelligence and Neuroscience, 2021: 6860503.
    [26]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
    [27]
    PRICE K V. Differential evolution[M]// Intelligent Systems Reference Library. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 187-214.
    [28]
    EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection[J]. Neurocomputing, 2016, 172: 371-381. doi: 10.1016/j.neucom.2015.06.083
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(591) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return