Volume 51 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
DENG J,GAO Z H,HUANG J T,et al. Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):281-292 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0964
Citation: DENG J,GAO Z H,HUANG J T,et al. Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):281-292 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0964

Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation

doi: 10.13700/j.bh.1001-5965.2022.0964
Funds:

Key Laboratory Projects (614220121020128) 

More Information
  • Corresponding author: E-mail:hjtcyf@163.com
  • Received Date: 03 Dec 2022
  • Accepted Date: 08 Jun 2023
  • Available Online: 10 Jul 2023
  • Publish Date: 03 Jul 2023
  • A challenging and crucial aspect of aircraft design is defining the boundary characteristics of the aircraft, which dictate their safety and flying performance. In order to increase the precision, effectiveness, and resilience of complex flow problems, we suggested in this study that adjoint optimization methods be extended to the design of aircraft boundary features. We did this by developing an upwind scheme adjoint equation and various flux limiter treatments. Firstly, the basic principle of discrete adjoint gradient solution was introduced. This served as the foundation for deriving the adjoint equation's inviscid term and its variational form of boundary conditions. According to the processing method of the flux limiter, adjoint equations with first-order accuracy, second-order accuracy, and mixed accuracy were formed. Subsequently, the boundary treatments for the adjoint equation were studied. By using the ONERA M6 wing for gradient accuracy and robustness validation examples, the performance of solving adjoint equations using upwind and central schemes was compared, and the effects of limiter and boundary treatments on the convergence and gradient accuracy of the adjoint equations were analyzed. The effectiveness of the solver in designing aircraft cruise performance and boundary characteristics was verified through examples of CRM wing body at cruise and boundary characteristics optimization design. The computation and design outcomes demonstrated the robustness and high gradient accuracy of the upwind approach developed in the article, suggesting its potential for resolving design issues pertaining to aircraft boundary characteristics.

     

  • loading
  • [1]
    夏露. 导弹外形气动与隐身一体化优化设计研究[D]. 西安: 西北工业大学, 2001.

    XIA L. Research on aerodynamics/stealth integrated optimization for missile[D]. Xi’an: Northwestern Polytechnical University, 2001(in Chinese).
    [2]
    张彬乾, 罗烈, 陈真利, 等. 飞翼布局隐身翼型优化设计[J]. 航空学报, 2014, 35(4): 957-967.

    ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil optimization design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 957-967(in Chinese).
    [3]
    张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10): 160-171.

    ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 160-171(in Chinese).
    [4]
    黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562. doi: 10.7638/kqdlxxb-2017.0064

    HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562(in Chinese). doi: 10.7638/kqdlxxb-2017.0064
    [5]
    黄江涛, 周铸, 余婧, 等. 考虑飞行器动力系统进排气效应的 设计参数灵敏度分析研究[J]. 推进技术, 2019, 40(2): 250-258.

    HUANG J T, ZHOU Z, YU J, et al. Sensitivity analysis of design variables considering intake and exhaust effects[J]. Journal of Propulsion Technology, 2019, 40(2): 250-258(in Chinese).
    [6]
    黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 96-107.

    HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 96-107(in Chinese).
    [7]
    周琳, 黄江涛, 高正红. 基于离散伴随方程的三维雷达散射截面几何敏感度计算[J]. 航空学报, 2020, 41(5): 128-138.

    ZHOU L, HUANG J T, GAO Z H. Three dimensional radar cross section geometric sensitivity calculation based on discrete adjoint equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 128-138(in Chinese).
    [8]
    ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal, 2020, 58(6): 2702-2715. doi: 10.2514/1.J059136
    [9]
    NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6): 1155-1163. doi: 10.2514/2.1765
    [10]
    DWIGHT R, BREZILLON J. Effect of various approximations of the discrete adjoint on gradient-based optimization[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2006: AIAA2006-690.
    [11]
    CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software[C]//52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 0568.
    [12]
    MADER C A, KENWAY G K W, YILDIRIM A, et al. ADflow: an open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization[J]. Journal of Aerospace Information Systems, 2020, 17(9): 508-527. doi: 10.2514/1.I010796
    [13]
    ZUO Y T, GAO Z H, ZHAN H. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 27(1): 67-72.
    [14]
    LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(3): 674-686.
    [15]
    伊卫林, 余佳, 宋红超, 等. 连续/离散型伴随优化方法在发动机内流优化设计中的应用探索[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集—发动机内流气动技术. 北京: 中国航天第三专业信息网, 2017: 314-327.

    YI W L, YU J, SONG H C, et al. Exploration of continuous/discrete adjoint optimization method in engine internal flow optimization design [C]// Proceedings of the 2nd JCAP and the 38th APITS Technical Conference - Engine Internal Flow Aerodynamics Technology. Beijing: APITS, 2017: 314-327(in Chinese).
    [16]
    SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences: NASA/CR–2014-218178[R/OL]. (2014-03-01)[2022-12-03]. http://ntrs.nasa.gov/api/citations/20140003093/downloads/20140003093.pdf.
    [17]
    HOLLANDERS H, LERAT A, PEYRET R. Three-dimensional calculation of transonic viscous flows by an implicit method[J]. AIAA Journal, 1985, 23(11): 1670-1678. doi: 10.2514/3.9150
    [18]
    LYU Z J, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2014, 53(4): 968-985.
    [19]
    VAN LEER B. Flux-vector splitting for the Euler equation[M]// Upwind and High-Resolution Schemes. Berlin, Heidelberg: Springer, 1997: 80-89.
    [20]
    VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136. doi: 10.1016/0021-9991(79)90145-1
    [21]
    KENWAY G, KENNEDY G, MARTINS J R R A. A CAD-free approach to high-fidelity aerostructural optimization[C]//13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Reston, Virginia: AIAA, 2010: 9231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article Metrics

    Article views(394) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return