Volume 51 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0891
Citation: ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0891

Improved chimpanzee search algorithm based on multi-strategy fusion and its application

doi: 10.13700/j.bh.1001-5965.2022.0891
Funds:

Basic Scientific Research Project of Higher Education Institutions in Liaoning Province (JYTZD2023023) 

More Information
  • Corresponding author: E-mail:gaoteng@dlpu.edu.cn
  • Received Date: 04 Nov 2022
  • Accepted Date: 30 Dec 2022
  • Available Online: 16 Aug 2024
  • Publish Date: 17 Jul 2024
  • In order to solve the problems of initial population boundary clustering distribution, slow convergence speed, low accuracy and easy falling into local optimum in chimpanzee search algorithm, an improved chimpanzee optimization algorithm with multi-strategy fusion (SPWChoA) was proposed. Firstly, the modified Sine chaotic map is used to initialize the population to solve the aggregation and distribution problem of population boundaries. Secondly, the concept of linear weight factor and adaptive acceleration factor for particle swarm optimization is presented. This is coupled with the enhanced nonlinear convergence factor balancing algorithm’s global search capability to quicken the algorithm’s convergence and raise its convergence accuracy. Finally, sparrow elite mutation and Bernoulli chaotic mapping strategies improved by adaptive water wave factors are introduced to improve the ability of individuals to jump out of local optima. By comparing the optimization results of 23 benchmark functions and Wilcoxon rank sum statistical test, it can be seen that the SPWChoA optimization algorithm has stronger robustness and applicability. Lastly, to further demonstrate the SPWChoA optimization algorithm’s superiority in handling actual optimization issues, the technique is applied to an engineering case.

     

  • loading
  • [1]
    卢纯义, 于津, 余忠东, 等. 基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法[J]. 计算机科学, 2022, 49(11): 228-233. doi: 10.11896/jsjkx.210800039

    LU C Y, YU J, YU Z D, et al. Detection method of rebar in concrete diameter based on improved grey wolf optimizer-based SVR[J]. Computer Science, 2022, 49(11): 228-233(in Chinese). doi: 10.11896/jsjkx.210800039
    [2]
    于振华, 刘争气, 刘颖, 等. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 计算机应用, 2023, 43(4): 1206-1213. doi: 10.11772/j.issn.1001-9081.2022030444

    YU Z H, LIU Z Q, LIU Y, et al. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction[J]. Journal of Computer Applications, 2023, 43(4): 1206-1213(in Chinese). doi: 10.11772/j.issn.1001-9081.2022030444
    [3]
    张可为, 赵晓林, 何利, 等. 一种改进X-best引导个体和动态等级更新机制的鸡群算法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(12): 2579-2593.

    ZHANG K W, ZHAO X L, HE L, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593(in Chinese).
    [4]
    郑旸, 龙英文, 吉明明, 等. 融合螺旋黏菌算法的混沌麻雀搜索算法与应用[J]. 计算机工程与应用, 2023, 59(14): 124-133. doi: 10.3778/j.issn.1002-8331.2204-0073

    ZHENG Y, LONG Y W, JI M M, et al. Chaotic sparrow search algorithm and application based on spiral slime mould algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 124-133(in Chinese). doi: 10.3778/j.issn.1002-8331.2204-0073
    [5]
    THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm[J]. Cluster Computing, 2019, 22(2): 4745-4766.
    [6]
    王一镜, 罗广恩, 王陈阳, 等. 基于自适应变异粒子群算法的船舶结构优化方法[J]. 中国舰船研究, 2022, 17(2): 156-164.

    WANG Y J, LUO G E, WANG C Y, et al. Ship structural optimization method based on daptive mutation particle swarm algorithm[J]. Chinese Journal of Ship Research, 2022, 17(2): 156-164(in Chinese).
    [7]
    缪燕子, 王玥, 李元龙, 等. 融合学习策略与导向果蝇机制的气味源主动定位方法研究[J]. 控制理论与应用, 2023, 40(5): 913-922. doi: 10.7641/CTA.2022.11078

    MIAO Y Z, WANG Y, LI Y L, et al. Study on active odor source localization method based on learning strategy and guided fruit fly mechanism[J]. Control Theory & Applications, 2023, 40(5): 913-922(in Chinese). doi: 10.7641/CTA.2022.11078
    [8]
    LU C, GAO L, YI J. Grey wolf optimizer with cellular topological structure[J]. Expert Systems with Applications, 2018, 107: 89-114. doi: 10.1016/j.eswa.2018.04.012
    [9]
    王子恺, 黄学雨, 朱东林, 等. 融合边界处理机制的学习型麻雀搜索算法[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(1): 286-298.

    WANG Z K, HUANG X Y, ZHU D L, et al. Learning sparrow search algorithm of hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 286-298(in Chinese).
    [10]
    王万良, 金雅文, 陈嘉诚, 等. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541. doi: 10.3785/j.issn.1008-973X.2022.03.012

    WANG W L, JIN Y W, CHEN J C, et al. Multi role multi strategy multi-objective particle swarm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 531-541(in Chinese). doi: 10.3785/j.issn.1008-973X.2022.03.012
    [11]
    张晶, 贺媛媛. 融合正余弦优化与跳距优化的DV-Hop定位算法[J]. 计算机工程与科学, 2022, 44(4): 645-653. doi: 10.3969/j.issn.1007-130X.2022.04.008

    ZHANG J, HE Y Y. A DV-Hop positioning algorithm combining sine and cosine optimization and hop distance optimization[J]. Computer Engineering & Science, 2022, 44(4): 645-653(in Chinese). doi: 10.3969/j.issn.1007-130X.2022.04.008
    [12]
    李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99. doi: 10.3778/j.issn.1002-8331.2106-0148

    LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99(in Chinese). doi: 10.3778/j.issn.1002-8331.2106-0148
    [13]
    谭慧娟, 李世明, 郭文鑫, 等. 基于混沌自适应人工鱼群算法的含家庭储能配电网快速重构方法[J]. 太阳能学报, 2022, 43(5): 468-477.

    TAN H J, LI S M, GUO W X, et al. Fast reconfiguration method of distribution network with household energy storage based on chaotic adaptive artificial fish swarm algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 468-477(in Chinese).
    [14]
    吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(8): 1712-1720.

    LU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese).
    [15]
    SAYED S A F, NABIL E, BADR A. A binary clonal flower pollination algorithm for feature selection[J]. Pattern Recognition Letters, 2016, 77: 21-27. doi: 10.1016/j.patrec.2016.03.014
    [16]
    刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360-2373.

    LIU C H, HE Q. Golden sine chimp optimization algorithm integrating multiple strategies[J]. Acta Automatica Sinica, 2023, 49(11): 2360-2373(in Chinese).
    [17]
    滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49. doi: 10.11918/j.issn.0367-6234.201806096

    TENG Z J, LV J L, GUO L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49(in Chinese). doi: 10.11918/j.issn.0367-6234.201806096
    [18]
    王鹏飞, 杜忠华, 牛坤, 等. 基于改进粒子群算法的倒立摆LQR优化控制[J]. 计算机仿真, 2021, 38(2): 220-224. doi: 10.3969/j.issn.1006-9348.2021.02.048

    WANG P F, DU Z H, NIU K, et al. LQR optimal control of inverted pendulum based on improved particle swarm optimization algorithm[J]. Computer Simulation, 2021, 38(2): 220-224(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.02.048
    [19]
    唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(3): 681-692.

    TANG Y Q, LI C H, SONG Y F, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692(in Chinese).
    [20]
    何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364.

    HE Q, LUO S H. Hybrid improved chimpanzee optimization algorithm and its mechanical application[J]. Control and Decision, 2023, 38(2): 354-364(in Chinese).
    [21]
    刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J]. 控制与决策, 2021, 36(9): 2152-2160.

    LIU J S, YUAN M M, ZUO F. Global search-oriented adaptive leader salp swarm algorithm[J]. Control and Decision, 2021, 36(9): 2152-2160(in Chinese).
    [22]
    汪超, 王丙柱, 岑豫皖, 等. 基于多样性全局最优引导和反向学习的离子运动算法[J]. 控制与决策, 2020, 35(7): 1584-1596.

    WANG C, WANG B Z, CEN Y W, et al. Ions motion optimization algorithm based on diversity optimal guidance and opposition-based learning[J]. Control and Decision, 2020, 35(7): 1584-1596(in Chinese).
    [23]
    DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. doi: 10.1016/j.swevo.2011.02.002
    [24]
    张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.

    ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high dimension function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views(322) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return