Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHONG J,LUO C,ZHANG H,et al. Flight data anomaly detection based on correlation parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1738-1745 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0574
Citation: ZHONG J,LUO C,ZHANG H,et al. Flight data anomaly detection based on correlation parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1738-1745 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0574

Flight data anomaly detection based on correlation parameter selection

doi: 10.13700/j.bh.1001-5965.2022.0574
Funds:

National Natural Science Foundation of China (52075349); Aeronautical Science Foundation of China (201905019001) 

More Information
  • Corresponding author: E-mail:hengzhang27@scu.edu.cn
  • Received Date: 02 Jul 2022
  • Accepted Date: 12 Aug 2022
  • Available Online: 16 Dec 2022
  • Publish Date: 14 Dec 2022
  • With the maturity of unmanned aerial vehicle (UAV) technology, UAVs are being used more and more widely in the military and civilian fields. Meanwhile, the safety of UAV is gradually being emphasized. The health of the UAV’s flight can be immediately reflected in its flight data. Anomaly detection research for UAV flight data is one of the important ways to improve the overall safety of UAVs. In this paper, we propose a convolutional neural network (CNN) anomaly detection method based on correlation parameter selection for flight data. Firstly, we use the maximal information coefficient (MIC) and Pearson correlation coefficient method to explore the correlation among flight parameters and establish a set of correlations between flight parameters. Then, we use the correlation flight parameters to train the convolutional neural network regression model. Finally, the anomalies were determined based on the residuals between the true and predicted values of the model. The false positive rate, false negative rate, and accuracy indexes of the approach suggested in this work were 0%, 0.19%, and 99.6%, respectively, demonstrating the method’s superiority. The method was confirmed using actual UAV flight data.

     

  • loading
  • [1]
    PARK K H, PARK E, KIM H K. Unsupervised fault detection on unmanned aerial vehicles: Encoding and thresholding approach[J]. Sensors, 2021, 21(6): 2208.
    [2]
    FOURLAS G K, KARRAS G C. A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles[J]. Machines, 2021, 9(9): 197. doi: 10.3390/machines9090197
    [3]
    ALTINORS A, YOL F, YAMAN O. A sound based method for fault detection with statistical feature extraction in UAV motors[J]. Applied Acoustics, 2021, 183: 108325. doi: 10.1016/j.apacoust.2021.108325
    [4]
    ACKERSON J, DAVE R, SELIYA N. Applications of recurrent neural network for biometric authentication & anomaly detection[J]. Information, 2021, 12(7): 272. doi: 10.3390/info12070272
    [5]
    THEISSLER A. Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection[J]. Knowledge-Based Systems, 2017, 123: 163-173.
    [6]
    FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1300-1309. doi: 10.1109/TMECH.2013.2258678
    [7]
    WANG B K, WANG Z Y, LIU L S, et al. Data-driven anomaly detection for UAV sensor data based on deep learning prediction model[C]//Proceedings of the Prognostics and System Health Management Conference. Piscataway: IEEE Press, 2019: 286-290.
    [8]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [9]
    WANG J Y, MIAO J G, WANG J L, et al. Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation[J]. Neurocomputing, 2020, 417: 224-238. doi: 10.1016/j.neucom.2020.05.102
    [10]
    LING J, LIU G J, LI J L, et al. Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model[J]. Nuclear Science and Techniques, 2020, 31(8): 75.
    [11]
    刘意, 毛莺池, 程杨堃, 等. 基于邻域一致性的异常检测序列集成方法[J]. 计算机科学, 2022, 49(1): 146-152. doi: 10.11896/jsjkx.201000156

    LIU Y, MAO Y C, CHENG Y K, et al. Locality and consistency based sequential ensemble method for outlier detection[J]. Computer Science, 2022, 49(1): 146-152(in Chinese). doi: 10.11896/jsjkx.201000156
    [12]
    郁滨, 熊俊. 基于平衡迭代规约层次聚类的无线传感器网络流量异常检测方案[J]. 电子与信息学报, 2022, 44(1): 305-313. doi: 10.11999/JEIT201004

    YU B, XIONG J. A novel WSN traffic anomaly detection scheme based on BIRCH[J]. Journal of Electronics & Information Technology, 2022, 44(1): 305-313(in Chinese). doi: 10.11999/JEIT201004
    [13]
    吴蕊, 张安勤, 田秀霞, 等. 基于改进K-means的电力数据异常检测算法[J]. 华东师范大学学报(自然科学版). 2020(4): 79-87.

    WU R, ZHANG A Q, TIAN X X, et al. Anomaly detection algorithm based on improved K-means for electric power data[J]. Journal of East China Normal University (Natural Science), 2020(4): 79-87(in Chinese).
    [14]
    MISHRA S, SAGBAN R, YAKOOB A, et al. Swarm intelligence in anomaly detection systems: An overview[J]. International Journal of Computers and Applications, 2021, 43(2): 109-118. doi: 10.1080/1206212X.2018.1521895
    [15]
    PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection: A review[J]. ACM Computing Surveys, 2022, 54(2): 1-38.
    [16]
    高妮, 贺毅岳, 马新成. 基于低频分量EEMD-SVR预测建模的指数择时策略[J]. 统计与决策, 2022, 38(2): 140-145.

    GAO N, HE Y Y, MA X C. Exponential timing strategy based on EEMD-SVR predictive modeling of low frequency component[J]. Statistics & Decision, 2022, 38(2): 140-145(in Chinese).
    [17]
    陶君雯, 张韬, 庄雪菲, 等. 动态贝叶斯网络模型和SARIMA模型对手足口病预测效果的比较[J]. 现代预防医学, 2020, 47(21): 3851-3854.

    TAO J W, ZHANG T, ZHUANG X F, et al. Comparison on prediction accuracy of dynamic Bayesian networks and SARIMA model for hand foot and mouth disease[J]. Modern Preventive Medicine, 2020, 47(21): 3851-3854(in Chinese).
    [18]
    纪少波, 李洋, 李萌, 等. 纯电动共享汽车驾驶行为对能耗的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 754-763.

    JI S B, LI Y, LI M, et al. Influence of driving behavior on energy consumption of pure electric shared vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(4): 754-763(in Chinese).
    [19]
    EDELMANN D, MORI T F, SZEKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960.
    [20]
    WANG B K, LIU D T, PENG Y, et al. Multivariate regression based fault detection and recovery of UAV flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3527-3537. doi: 10.1109/TIM.2019.2935576
    [21]
    KEIPOUR A, MOUSAEI M, SCHERER S. Automatic real-time anomaly detection for autonomous aerial vehicles[C]//Proceedings of the International Conference on Robotics and Automation. Piscataway: IEEE Press, 2019: 5679-5685.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(674) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return