Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
SUN X A,WANG Y,ZHOU Q X. A comprehensive air-ground target attackability value ranking based on comprehensive weighting[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1731-1737 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0539
Citation: SUN X A,WANG Y,ZHOU Q X. A comprehensive air-ground target attackability value ranking based on comprehensive weighting[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1731-1737 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0539

A comprehensive air-ground target attackability value ranking based on comprehensive weighting

doi: 10.13700/j.bh.1001-5965.2022.0539
More Information
  • Corresponding author: E-mail:yinwangee@nuaa.edu.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 12 Aug 2022
  • Available Online: 03 Feb 2023
  • Publish Date: 18 Jan 2023
  • In the area of intelligent warfare, unmanned system combat capabilities have increasingly become an important factor in the military strength of major powers. When utilizing unmanned aerial vehicles for air-to-ground assault operations, it is imperative to assess and prioritize the enemy’s ground targets' strike values. This paper presents a newly developed index scheme to determine the threat values of both air and ground targets in a real-time fashion. In the proposed method, the weights of each threat factor were calculated through a combined method, using the entropy weight method and the analytic hierarchy process. Subsequently, the ranking of both air and ground targets is determined and visualized through a sectoral radar map. A number of ground and aerial targets are valued using a simulation example, and the result is a target value ranking that complies with the convention.

     

  • loading
  • [1]
    奚之飞, 徐安, 寇英信, 等. 基于PCA-MPSO-ELM的空战目标威胁评估[J]. 航空学报, 2020, 41(9): 216-231.

    XI Z F, XU A, KOU Y X, et al. Threat assessment of air combat targets based on PCA-MPSO-ELM[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 216-231(in Chinese).
    [2]
    奚之飞, 徐安, 寇英信, 等. 基于灰主成分的空战目标威胁评估[J]. 系统工程与电子技术, 2021, 43(1): 147-155.

    XI Z F, XU A, KOU Y X, et al. Threat assessment of air combat targets based on grey principal component[J]. Systems Engineering and Electronic Technology, 2021, 43(1): 147-155(in Chinese).
    [3]
    奚之飞, 徐安, 寇英信, 等. 基于前景理论的空战目标威胁评估[J]. 兵工学报, 2020, 41(6): 1236-1248.

    XI Z F, XU A, KOU Y X, et al. Threat assessment of air combat targets based on prospect theory[J]. Acta Armamentarii, 2020, 41(6): 1236-1248(in Chinese).
    [4]
    胡涛, 王栋, 孙曜, 等. 基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J]. 兵工学报, 2020, 41(12): 2561-2569.

    HU T, WANG D, SUN Y, et al. Air combat threat assessment based on improved CRITIC-LRA and grey approximate ideal solution ranking method[J]. Acta Armamentarii, 2020, 41(12): 2561-2569(in Chinese).
    [5]
    张堃, 周德云. 基于熵的TOPSIS法空战多目标威胁评估[J]. 系统工程与电子技术, 2007, 29(9): 1493-1495.

    ZHANG K, ZHOU D Y. Entropy-based TOPSIS method for air warfare multi-target threat assessment[J]. Systems Engineering and Electronics Technology, 2007, 29(9): 1493-1495(in Chinese).
    [6]
    董鹏宇, 王红卫, 陈游. 基于博弈论的GRA-TOPSIS辐射源威胁评估方法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(10): 1973-1981.

    DONG P Y, WANG H W, CHEN Y. GRA-TOPSIS radiation source threat assessment method based on game theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1973-1981(in Chinese).
    [7]
    张才坤. 空战威胁可视化评估方法研究[D]. 西安: 西北工业大学, 2015: 4-5.

    ZHANG C K. Research on air warfare threat visualization assessment method[D]. Xi’an: Northwestern Polytechnic University, 2015: 4-5(in Chinese).
    [8]
    姜宁, 胡维礼, 孙翱. 辐射源威胁等级判定的模糊多属性方法[J]. 兵工学报, 2004, 24(1): 56-59.

    JIANG N, HU W L, SUN A. A fuzzy multi-attribute method for determining the threat level of radiation sources[J]. Acta Armamentarii, 2004, 24(1): 56-59(in Chinese).
    [9]
    罗小平, 姜宁, 栾胜利. 辐射源威胁排序模糊综合评判[J]. 火力与指挥控制, 2005, 30(4): 66-68.

    LUO X P, JIANG N, LUAN S L. Fuzzy comprehensive evaluation of radiation source threat ranking[J]. Firepower and Command and Control, 2005, 30(4): 66-68(in Chinese).
    [10]
    LIEBHABER M J, FEHER B. Air threat assessment: Research, model, and display guidelines[J]. Air Threat Assessment Research Model & Display Guidelines, 2002, 3(5): 4-6.
    [11]
    JOHANSSOM F, FALKMAN G. A comparison between two approaches to threat evaluation in an air defense scenario[C]//Proceedings of the 5th Modeling Decisions for Artificial Intelligence International Conference.Piscataway: IEEE Press, 2008:110-121.
    [12]
    AZIMIRAD E, HADDADNIA J. Target threat assessment using fuzzy sets theory[J]. International Journal of Advances in Intelligent Informatics, 2015, 1(2): 57-74. doi: 10.26555/ijain.v1i2.18
    [13]
    OKELLQ N, THORNS G. Threat assessment using bayesian networks[C]//Proceedings of the 6th International Conference of Information Fusion. Piscataway: IEEE Press, 2003: 1102-1109.
    [14]
    杨爱武, 李战武, 徐安, 等. 基于RS-CRITIC的空战目标威胁评估[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(12): 2357-2365.

    YANG A W, LI Z W, XU A, et al. Air combat target threat assessment based on RS-CRITIC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2357-2365(in Chinese).
    [15]
    叶跃祥, 糜仲春, 王宏宇, 等. AHP判断矩阵一致性调整的前瞻算法[J]. 系统工程, 2006(10): 117-121.

    YE Y X, MI Z C, WANG H Y, et al. A forward-looking algorithm for consistency adjustment of AHP judgment matrix[J]. Systems Engineering, 2006(10): 117-121(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views(441) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return