Volume 51 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
KE Z J,XU G N,CAI R,et al. Optimization of multi-mission scheduling for swarm UAVs with charging platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2782-2791 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0414
Citation: KE Z J,XU G N,CAI R,et al. Optimization of multi-mission scheduling for swarm UAVs with charging platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2782-2791 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0414

Optimization of multi-mission scheduling for swarm UAVs with charging platform

doi: 10.13700/j.bh.1001-5965.2022.0414
Funds:

Strategic Priority Research Program of the Chinese Academy of the Sciences (XDA17020304)

More Information
  • Corresponding author: E-mail:xugn@aircas.ac.cn
  • Received Date: 26 May 2022
  • Accepted Date: 19 Nov 2022
  • Available Online: 13 Jan 2023
  • Publish Date: 11 Jan 2023
  • The swarm unmanned aerial vehicles (UAVs), characterized by their large quantity, low cost, and unified scheduling, have broad application prospects. Unified scheduling is a focal point and challenge in swarm UAVs research, aiming to the optimal allocation of tasks and resources. Current scheduling research primarily focuses on small-scale, short-term scenarios without considering complex scenarios such as mid-operation charging. However, for future multi-task and long-term applications, scheduling optimization must account for such factors. An improved mission scheduling method for swarm UAVs based on a unified scheduling model and an improved genetic algorithm was proposed. First, the wireless charging platform resources were incorporated into the UAV working environment, and the working scenario was modeled systematically. Then, the genetic algorithm was used to optimize the mission and charging platform resource allocation. Finally, the proposed method was tested for validation using simulated scenarios. Test results show that the method proposed can better adapt to changes in missions, environment, and resources, showing good performance even for large-scale swarm UAVs.

     

  • loading
  • [1]
    杨健, 程程, 谢旭, 等. 无人机蜂群对面攻击任务规划能力需求研究[C]//第九届中国指挥控制大会. 北京: 中国指挥与控制学会, 2021: 252-258.

    YANG J, CHENG C, XIE X, et al. Study on the mission planning requirements in the UAV swarms air to surface attack operations[C]//Proceedings of the 9th China Command and Control Conference. Beijing: Chinese Institute of Command and Control, 2021: 252-258(in Chinese).
    [2]
    焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1): 61-64. doi: 10.3969/j.issn.1673-2421.2019.01.014

    JIAO S J, WANG B Q, LIU J H, et al. Review of drone swarm research at home and abroad[J]. Aerospace Electronic Warfare, 2019, 35(1): 61-64(in Chinese). doi: 10.3969/j.issn.1673-2421.2019.01.014
    [3]
    杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述[J]. 自动化学报, 2020, 46(2): 222-241.

    DU Y H, XING L N, CAI Z Q. Survey on intelligent scheduling technologies for unmanned flying craft clusters[J]. Acta Automatica Sinica, 2020, 46(2): 222-241(in Chinese).
    [4]
    CHEN G S, CRUZ J B. Genetic algorithm for task allocation in UAV cooperative control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 5582.
    [5]
    DI FRANCO C, BUTTAZZO G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445-462.
    [6]
    AHMADZADEH A, SAYYAR-ROUDSARI B, HOMAIFAR A. A hybrid projected gradient-evolutionary search algorithm for capacitated multi-source multiuavs scheduling with time windows[M]//BUTENKO S, MURPHEY R, PARDALOS P M. Recent developments in cooperative control and optimization. Berlin: Springer, 2004: 1-21.
    [7]
    赵明, 苏小红, 马培军, 等. 复杂多约束UAVs协同目标分配的一种统一建模方法[J]. 自动化学报, 2012, 38(12): 2038-2048. doi: 10.3724/SP.J.1004.2012.02038

    ZHAO M, SU X H, MA P J, et al. A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions[J]. Acta Automatica Sinica, 2012, 38(12): 2038-2048(in Chinese). doi: 10.3724/SP.J.1004.2012.02038
    [8]
    RAMIREZ-ATENCIA C, BELLO-ORGAZ G, R-MORENO M D, et al. A hybrid MOGA-CSP for multi-UAV mission planning[C]//Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2015: 1205-1208.
    [9]
    GAO C, ZHEN Z Y, GONG H J. A self-organized search and attack algorithm for multiple unmanned aerial vehicles[J]. Aerospace Science and Technology, 2016, 54: 229-240. doi: 10.1016/j.ast.2016.03.022
    [10]
    WU W N, WANG X G, CUI N G. Fast and coupled solution for cooperative mission planning of multiple heterogeneous unmanned aerial vehicles[J]. Aerospace Science and Technology, 2018, 79: 131-144. doi: 10.1016/j.ast.2018.05.039
    [11]
    OH G, KIM Y, AHN J, et al. PSO-based optimal task allocation for cooperative timing missions[J]. IFAC-PapersOnLine, 2016, 49(17): 314-319. doi: 10.1016/j.ifacol.2016.09.054
    [12]
    SONG Y Q, SUN X Y, WANG H X, et al. Design of charging coil for unmanned aerial vehicle-enabled wireless power transfer[C]//Proceedings of the 8th International Conference on Power and Energy Systems. Piscataway: IEEE Press, 2018: 268-272.
    [13]
    JEONG S, BITO J, TENTZERIS M M. Design of a novel wireless power system using machine learning techniques for drone applications[C]//Proceedings of the IEEE Wireless Power Transfer Conference. Piscataway: IEEE Press, 2017: 1-4.
    [14]
    王云哲, 徐国宁, 王生, 等. 蜂群无人机充电排队优化方法[J]. 航空学报, 2020, 41(10): 323928.

    WANG Y Z, XU G N, WANG S, et al. Optimization of charging queuing of UAV swarming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 323928(in Chinese).
    [15]
    KIM J, KIM S, JEONG J, et al. CBDN: cloud-based drone navigation for efficient battery charging in drone networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4174-4191. doi: 10.1109/TITS.2018.2883058
    [16]
    SHIN M, KIM J, LEVORATO M. Auction-based charging scheduling with deep learning framework for multi-drone networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4235-4248. doi: 10.1109/TVT.2019.2903144
    [17]
    殷人昆. 数据结构: 用面向对象方法与C++语言描述[M]. 2版. 北京: 清华大学出版社, 2007.

    YIN R K. Data structure: described by object-oriented method and C++ language[M]. 2nd ed. Beijing: Tsinghua University Press, 2007(in Chinese).
    [18]
    张启瑞, 魏瑞轩, 何仁珂, 等. 城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10): 1407-1413. doi: 10.7641/CTA.2015.50351

    ZHANG Q R, WEI R X, HE R K, et al. Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles[J]. Control Theory & Applications, 2015, 32(10): 1407-1413(in Chinese). doi: 10.7641/CTA.2015.50351
    [19]
    赵嶷飞, 郑雨欣. 城市物流无人机飞行任务剖面构建与优化[J]. 飞行力学, 2021, 39(3): 54-59.

    ZHAO Y F, ZHENG Y X. Construction and optimization of flight mission profile of urban logistics UAV[J]. Flight Dynamics, 2021, 39(3): 54-59(in Chinese).
    [20]
    SHI D J, DAI X H, ZHANG X W, et al. A practical performance evaluation method for electric multicopters[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1337-1348. doi: 10.1109/TMECH.2017.2675913
    [21]
    DIETRICH T, KRUG S, ZIMMERMANN A. An empirical study on generic multicopter energy consumption profiles[C]//Proceedings of the Annual IEEE International Systems Conference. Piscataway: IEEE Press, 2017: 1-6.
    [22]
    KADDANI S, VANDERPOOTEN D, VANPEPERSTRAETE J M, et al. Weighted sum model with partial preference information: application to multi-objective optimization[J]. European Journal of Operational Research, 2017, 260(2): 665-679. doi: 10.1016/j.ejor.2017.01.003
    [23]
    YU Y, TANG J, HUANG J Y, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361-6374. doi: 10.1109/TCOMM.2021.3089476
    [24]
    GIAGKIOZIS I, FLEMING P J. Methods for multi-objective optimization: an analysis[J]. Information Sciences, 2015, 293: 338-350. doi: 10.1016/j.ins.2014.08.071
    [25]
    KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views(902) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return