| Citation: | HU J,GENG H,YANG F Q,et al. Optimization of discharge chamber key parameters for 10 cm Kaufman xenon ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1974-1981 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0631 | 
Discharge chamber configuration is the foundation and core of ion thruster structure design, which directly influences the working efficiency of the discharge chamber and in-orbit lifetime of the thruster. Aiming at the application requirement of new complex aerospace equipment for ion thruster with long-life, high thrust wide-range and continuous variable-thrust, this research explored the key factors of discharge chamber configuration parameters influencing the efficacy of 10 cm ion thruster, as well as the influence of magnetic field divergence, electron channel area and hollow cathode position and other sensitive parameters on discharge chamber performances. Then optimization of parameter configuration and verification of discharge chamber of 10 cm ion thruster were conducted. The results showed that by optimizing discharge chamber key parameters, the maximum thrust of 10 cm ion thruster increased from 20 mN to 25 mN, 25% higher without changing the mechanical structure of the thruster, which extended the thrust adjustment range from 1−20 mN to 1−25 mN, and enhanced the thrust resolution in the whole range to more than 50 μN. Moreover, the anode potential dropped to 38.4 V from 43.5 V, the discharge loss dropped to 308 W/A from 345 W/A, and the estimated lifetime of thruster will be increased from 15000 h to 17500 h. The above research will certainly provide technical support for the extended in-orbit application of 10 cm ion thruster.
	                | [1] | 
					 郑茂繁, 张天平, 孟伟, 等. 20 cm氙离子推力器性能扩展研究[J]. 推进技术, 2015, 36(7): 1116-1120. doi:  10.13675/j.cnki.tjjs.2015.07.021 
					ZHENG M F, ZHANG T P, MENG W, et al.  Research of improvement performance for 20 cm xenon ion thruster[J]. Journal of Propulsion Technology, 2015, 36(7): 1116-1120(in Chinese). doi:  10.13675/j.cnki.tjjs.2015.07.021 
						
					 | 
			
| [2] | 
					 杨福全, 万耿民, 唐福俊, 等. 电推力器气路高电压绝缘技术研究[J]. 真空科学与技术学报, 2014, 34(12): 1290-1293. doi:  10.13922/j.cnki.cjovst.2014.12.03 
					YANG F Q, WAN G M, TANG F J, et al.  Novel type of high voltage xenon propellant insulator for electric thruster[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1290-1293(in Chinese). doi:  10.13922/j.cnki.cjovst.2014.12.03 
						
					 | 
			
| [3] | 
					 张天平, 田华兵, 孙运奎. 离子推进系统用于GEO卫星南北位保使命的能力与效益[J]. 真空与低温, 2010, 16(2): 72-77. doi:  10.3969/j.issn.1006-7086.2010.02.002 
					ZHANG T P, TIAN H B, SUN Y K.  Capability and benefit of the lips-200 system for nssk mission of geo satellites[J]. Vacuum and Cryogenics, 2010, 16(2): 72-77(in Chinese). doi:  10.3969/j.issn.1006-7086.2010.02.002 
						
					 | 
			
| [4] | 
					 胡竟, 江豪成, 王亮, 等. 阴极挡板对30 cm氙离子推力器性能影响的研究[J]. 真空与低温, 2015, 21(2): 103-106. doi:  10.3969/j.issn.1006-7086.2015.02.010 
					HU J, JIANG H C, WANG L, et al.  Study on performances of 30 cm xenon ion thruster subjected to cathode baffle[J]. Vacuum and Cryogenics, 2015, 21(2): 103-106(in Chinese). doi:  10.3969/j.issn.1006-7086.2015.02.010 
						
					 | 
			
| [5] | 
					 胡竟, 王亮, 张天平, 等. LIPS-300离子推力器环形会切磁场等效磁路分析研究[J]. 推进技术, 2018, 39(3): 715-720. doi:  10.13675/j.cnki.tjjs.2018.03.028 
					HU J, WANG L, ZHANG T P, et al.  Research on equivalent magnetic circuit of ring-cusp magnet field for LIPS-300 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(3): 715-720(in Chinese). doi:  10.13675/j.cnki.tjjs.2018.03.028 
						
					 | 
			
| [6] | 
					 杨福全, 王蒙, 郑茂繁, 等. 10 cm离子推力器放电室性能优化研究[J]. 推进技术, 2017, 38(1): 235-240. doi:  10.13675/j.cnki.tjjs.2017.01.031 
					YANG F Q, WANG M, ZHENG M F, et al.  Optimization of performance of discharge chamber of a 10 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2017, 38(1): 235-240(in Chinese). doi:  10.13675/j.cnki.tjjs.2017.01.031 
						
					 | 
			
| [7] | 
					 席竹君, 杨福全, 高俊, 等. 励磁电流对离子推力器推力变化影响研究[J]. 真空与低温, 2017, 23(2): 98-101. doi:  10.3969/j.issn.1006-7086.2017.02.007 
					XI Z J, YANG F Q, GAO J, et al.  The research on the influence of magnet current towards the ion thruster thrust[J]. Vacuum and Cryogenics, 2017, 23(2): 98-101(in Chinese). doi:  10.3969/j.issn.1006-7086.2017.02.007 
						
					 | 
			
| [8] | 
					 胡竟, 杨福全, 郭德洲, 等. 基于CFD的10 cm氙离子推力器阳极推进剂供给方式优化[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(8): 1476-1484. 
					HU J, YANG F Q, GUO D Z, et al.  Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1476-1484(in Chinese). 
						
					 | 
			
| [9] | 
					 胡竟, 杨福全, 郭德洲, 等. 10 cm氙离子推力器变推力特性研究[J]. 推进技术, 2020, 41(10): 2382-2389. doi:  10.13675/j.cnki.tjjs.190562 
					HU J, YANG F Q, GUO D Z, et al.  Analysis on variable-thrust characteristic of 10 cm xenon ion thruster[J]. Journal of Propulsion Technology, 2020, 41(10): 2382-2389(in Chinese). doi:  10.13675/j.cnki.tjjs.190562 
						
					 | 
			
| [10] | 
					 BROPHY J R. Ion thruster performance model: NASA CR-174810 [R]. Washington, D. C. : NASA, 1984. 
						
					 | 
			
| [11] | 
					 WILBUR P J, BROPHY J R.  The effect of discharge chamber wall temperature on ion thruster performance[J]. AIAA Journal, 1986, 24(2): 278-283. doi:  10.2514/3.9257 
						
					 | 
			
| [12] | 
					 KERSLAKE W R, GOLDMAN R G, NIEBERDING W C.  SERT II - Mission, thruster performance, and in-flight thrust measurements[J]. Journal of Spacecraft and Rockets, 1971, 8(3): 213-224. doi:  10.2514/3.30250 
						
					 | 
			
| [13] | 
					 BECHTEL R. The 30 cm J series mercury bombardment thruster: AIAA1981-714[R]. Reston: AIAA, 1981. 
						
					 | 
			
| [14] | 
					 HIATT J, WILBUR P. Ring cusp discharge chamber performance optimization: AIAA1985-2007[R]. Reston: AIAA, 1985. 
						
					 | 
			
| [15] | 
					 OGUNJOBI T A, MENART J A. Computational study of ring-cusp magnet configurations that provide maximum electron confinement: AIAA-2006-4489[R]. Reston: AIAA, 2006. 
						
					 | 
			
| [16] | 
					 BENNETT W, OGUNJOBI T A, MENART J A. Computational study of the effects of cathode placement, electron energy, and magnetic field strength on the confinement of electrons: AIAA-2007-5248 [R]. Reston: AIAA, 2007. 
						
					 | 
			
| [17] | 
					 MENART J A, PATIERSON M J. Magnetic circuit for enhanced discharge chamber performance of a small ion thruster: AIAA-1998-3343 [R]. Reston: AIAA, 1998. 
						
					 | 
			
| [18] | 
					 陈娟娟, 张天平, 贾艳辉, 等. 不同磁感强度下LIPS-200离子推力器放电室性能的研究[J]. 真空与低温, 2013, 19(3): 163-167. doi:  10.3969/j.issn.1006-7086.2013.03.009 
					CHEN J J, ZHANG T P, JIA Y H, et al.  The study of the effect of magnetic field strength on the performance of the LIPS-200 ion thruster[J]. Vacuum and Cryogenics, 2013, 19(3): 163-167(in Chinese). doi:  10.3969/j.issn.1006-7086.2013.03.009 
						
					 | 
			
| [19] | 
					 陈娟娟, 张天平, 贾艳辉, 等. 20 cm氙离子推力器放电室性能优化[J]. 强激光与粒子束, 2012, 24(10): 2469-2473. doi:  10.3788/HPLPB20122410.2469 
					CHEN J J, ZHANG T P, JIA Y H, et al.  Performance optimization of 20 cm xenon ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2012, 24(10): 2469-2473(in Chinese). doi:  10.3788/HPLPB20122410.2469 
						
					 | 
			
| [20] | 
					 孙明明, 张天平, 吴先明. 20 cm离子推力器放电室流场计算模拟[J]. 强激光与粒子束, 2015, 27(5): 206-212. 
					SUN M M, ZHANG T P, WU X M.  Flow field simulation of 20 cm diameter ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2015, 27(5): 206-212(in Chinese). 
						
					 | 
			
| [21] | 
					 吴先明, 张天平, 陈娟娟, 等. 磁路对30 cm离子推力器性能影响研究[J]. 推进技术, 2016, 37(1): 193-200. doi:  10.13675/j.cnki.tjjs.2016.01.025 
					WU X M, ZHANG T P, CHEN J J, et al.  Study on effects of magnetic circuit on performance of 30 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2016, 37(1): 193-200(in Chinese). doi:  10.13675/j.cnki.tjjs.2016.01.025 
						
					 | 
			
| [22] | 
					 鹿畅, 夏广庆, 孙斌. 环型离子推力器放电室参数对推力器性能的影响[J]. 真空与低温, 2022, 28(1): 39-47. doi:  10.3969/j.issn.1006-7086.2022.01.005 
					LU C, XIA G Q, SUN B.  Effect of discharge chamber parameters of annular ion thruster on the performance[J]. Vacuum and Cryogenics, 2022, 28(1): 39-47(in Chinese). doi:  10.3969/j.issn.1006-7086.2022.01.005 
						
					 | 
			
| [23] | 
					 鹿畅, 梁学明, 夏广庆, 等. 环型离子推力器放电机理研究进展[J]. 固体火箭技术, 2021, 44(2): 215-222. 
					LU C, LIANG X M, XIA G Q, et al.  Research progress on discharge mechanism of annular ion thruster[J]. Journal of Solid Rocket Technology, 2021, 44(2): 215-222(in Chinese). 
						
					 | 
			
| [24] | 
					 DAVID H M. Factors affecting the beam divergence of a T5 ion engine: IEPC-1997-095 [R]. Washington, D. C. : IEPC, 1997: 1-8. 
						
					 | 
			
| [25] | 
					 BROPHY J R, WILBUR P J.  Baffle aperture design model for electron bombardment thrusters[J]. Journal of Spacecraft and Rockets, 1982, 19(6): 586-591. doi:  10.2514/3.62305 
						
					 | 
			
| [26] | 
					 MILLIGAN D J, GABRIEL S B. Investigation of the baffle annulus region of the UK25 ion thruster: AIAA-1999-2440 [R]. Reston: AIAA, 1999. 
						
					 | 
			
| [27] | 
					 RAWLIN V, WILLIAMS G, PIÑERO L. Status of ion engine development for high power, high specific impulse missions: IEPC-2001-096 [R]. Washington, D. C.: IEPC, 2001: 1-17. 
						
					 | 
			
| [28] | 
					 BROPHY J R. Ion engine service life validation by analysis and testing: AIAA-1996-2715[R]. Reston: AIAA, 1996. 
						
					 |