Volume 49 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
SONG L Q,CHEN W J,CHEN W H,et al. Improvement and application of hybrid strategy-based sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2187-2199 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0629
Citation: SONG L Q,CHEN W J,CHEN W H,et al. Improvement and application of hybrid strategy-based sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2187-2199 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0629

Improvement and application of hybrid strategy-based sparrow search algorithm

doi: 10.13700/j.bh.1001-5965.2021.0629
Funds:

National Natural Science Foundation of China (51975002) 

More Information
  • Corresponding author: E-mail:wjchen@ahu.edu.cn
  • Received Date: 23 Oct 2021
  • Accepted Date: 10 Dec 2021
  • Publish Date: 25 Jan 2022
  • Aiming at solving the problems in the original sparrow search algorithm (SSA), such as low search accuracy, weak global search ability, slow convergence speed and easy tendency to fall into local optimum, a hybrid strategy-based sparrow search algorithm (HSSA) is proposed. First, an improved Circle chaotic map was used to initialize the population and increase the diversity of the population. Then, the salp swarm algorithm was integrated into the search formula of the discoverers to enhance its global search ability and scope in the early stage of iteration, and an adaptive step size factor was introduced into the search formula of the participants to improve the local search ability and convergence speed of the algorithm. Next, the mirror selection mechanism was applied to boost the individual quality after each iteration, thereby improving the search accuracy and speed of the algorithm. Finally, a simulated annealing mechanism was added to the location update, thus enabling the algorithm effectively to jump out of local optimum. The test results of eight functions show that the HSSA has better optimization performance than SSA. By combining the improved algorithm and the extreme learning machine, the classification and prediction accuracy of human surface electromyogram signal data increased from 80.17% to 90.87%, which proves the feasibility and good performance of the improved algorithm.

     

  • loading
  • [1]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [2]
    WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: An overview[J]. Soft Computing, 2018, 22(2): 387-408. doi: 10.1007/s00500-016-2474-6
    [3]
    KARABOGA D, OZTURK C. A novel clustering approach: Artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2011, 11(1): 652-657. doi: 10.1016/j.asoc.2009.12.025
    [4]
    吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021, 43(2): 318-327. doi: 10.12305/j.issn.1001-506X.2021.02.05

    LV X, MU X D, ZHANG J. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics, 2021, 43(2): 318-327(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.02.05
    [5]
    汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136.

    TANG A D, HAN T, XU D W, et al. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm[J]. Journal of Computer Applications, 2021, 41(7): 2128-2136(in Chinese).
    [6]
    黄敬宇. 融合t分布和Tent混沌映射的麻雀搜索算法研究[D]. 兰州: 兰州大学, 2021.

    HUANG J Y. Research on sparrow search algorithm based on fusion of t distribution and tent chaotic mapping[D]. Lanzhou: Lanzhou University, 2021(in Chinese).
    [7]
    徐健, 陈倩倩, 刘秀平. 基于交叉运算的人工蜂群优化BP神经网络的脑电信号分类[J]. 激光与光电子学进展, 2020, 57(21): 244-253.

    XU J, CHEN Q Q, LIU X P. Classification of electroencephalography based on BP neural network optimized by crossover operation of artificial bee colonies[J]. Laser & Optoelectronics Progress, 2020, 57(21): 244-253(in Chinese).
    [8]
    刘栋, 魏霞, 王维庆, 等. 基于SSA-ELM的短期风电功率预测[J]. 智慧电力, 2021, 49(6): 53-59.

    LIU D, WEI X, WANG W Q, et al. Short-term wind power prediction based on SSA-ELM[J]. Smart Power, 2021, 49(6): 53-59(in Chinese).
    [9]
    蒋艳会, 李峰. 基于混沌粒子群算法的多阈值图像分割[J]. 计算机工程与应用, 2010, 46(10): 175-176. doi: 10.3778/j.issn.1002-8331.2010.10.055

    JIANG Y H, LI F. Multi-threshold method of image segmentation based on chaotic particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2010, 46(10): 175-176(in Chinese). doi: 10.3778/j.issn.1002-8331.2010.10.055
    [10]
    HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. doi: 10.1007/s13042-011-0019-y
    [11]
    吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(8): 1712-1720.

    LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese).
    [12]
    HERBADJI D, DEROUICHE N, BELMEGUENAI A, et al. A tweakable image encryption algorithm using an improved logistic chaotic map[J]. Traitement Du Signal, 2019, 36(5): 407-417. doi: 10.18280/ts.360505
    [13]
    ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31(8): 4385-4405. doi: 10.1007/s00521-018-3343-2
    [14]
    张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.

    ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and onedimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180(in Chinese).
    [15]
    MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002
    [16]
    LI J N, LE M L. Improved whale optimization algorithm based on mirror selection[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(S): 115-123.
    [17]
    TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). Piscataway: IEEE Press, 2006: 695-701.
    [18]
    SUMAN B, KUMAR P. A survey of simulated annealing as a tool for single and multiobjective optimization[J]. Journal of the Operational Research Society, 2006, 57(10): 1143-1160. doi: 10.1057/palgrave.jors.2602068
    [19]
    SHADRAVAN S, NAJI H R, BARDSIRI V K. The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 20-34. doi: 10.1016/j.engappai.2019.01.001
    [20]
    MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [21]
    黄海燕, 彭虎, 邓长寿, 等. 均匀局部搜索和高斯变异的布谷鸟搜索算法[J]. 小型微型计算机系统, 2018, 39(7): 1451-1458. doi: 10.3969/j.issn.1000-1220.2018.07.015

    HUANG H Y, PENG H, DENG C S, et al. Cuckoo search algorithm of uniform local search and Gauss mutation[J]. Journal of Chinese Computer Systems, 2018, 39(7): 1451-1458(in Chinese). doi: 10.3969/j.issn.1000-1220.2018.07.015
    [22]
    付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J]. 控制与决策, 2022, 37(1): 87-96. doi: 10.13195/j.kzyjc.2021.0582

    FU H, LIU H. Improved sparrow search algorithm with multi-strategy integration and its application[J]. Control and Decision, 2022, 37(1): 87-96(in Chinese). doi: 10.13195/j.kzyjc.2021.0582
    [23]
    刘小娟, 王联国. 一种基于差分进化的正弦余弦算法[J]. 工程科学学报, 2020, 42(12): 1674-1684.

    LIU X J, WANG L G. A sine cosine algorithm based on differential evolution[J]. Chinese Journal of Engineering, 2020, 42(12): 1674-1684(in Chinese).
    [24]
    唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(3): 681-692. doi: 10.13700/j.bh.1001-5965.2021.0282

    TANG Y Q, LI C H, SOMG Y F, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0282
    [25]
    毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164. doi: 10.3778/j.issn.1673-9418.2010032

    MAO Q H, ZHANG Q. Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164(in Chinese). doi: 10.3778/j.issn.1673-9418.2010032
    [26]
    张强, 李盼池, 王梅. 基于自适应进化策略的人工蜂群优化算法[J]. 电子科技大学学报, 2019, 48(4): 560-566. doi: 10.3969/j.issn.1001-0548.2019.04.013

    ZHANG Q, LI P C, WANG M. Artificial bee colony optimization algorithm based on adaptive evolution strategy[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(4): 560-566(in Chinese). doi: 10.3969/j.issn.1001-0548.2019.04.013
    [27]
    佟丽娜, 侯增广, 彭亮, 等. 基于多路sEMG时序分析的人体运动模式识别方法[J]. 自动化学报, 2014, 40(5): 810-821.

    TONG L N, HOU Z G, PENG L, et al. Multi-channel sEMG time series analysis based human motion recognition method[J]. Acta Automatica Sinica, 2014, 40(5): 810-821(in Chinese).
    [28]
    刘冰, 李宁, 于鹏, 等. 上肢康复外骨骼机器人控制方法进展研究[J]. 电子科技大学学报, 2020, 49(5): 643-651. doi: 10.12178/1001-0548.2020212

    LIU B, LI N, YU P, et al. Research on the control methods of upper limb rehabilitation exoskeleton robot[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(5): 643-651(in Chinese). doi: 10.12178/1001-0548.2020212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views(1111) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return