Volume 49 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0609
Citation: ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0609

Unsteady flow mechanism of high Mach number cavity

doi: 10.13700/j.bh.1001-5965.2021.0609
Funds:

National Numerical Windtunnel Project 

More Information
  • Corresponding author: E-mail:rorzey@cqjj8.comu.cn
  • Received Date: 15 Oct 2021
  • Accepted Date: 17 Jan 2022
  • Publish Date: 10 Mar 2022
  • The cavity flow widely exists in aircraft, and the flow in embedded weapon bay is one of the most typical cavity flows. The cavity flow has a complex structure and generates strong pressure fluctuations due to the interaction of shear layers, vortices, and shock waves. Using the unstructured hybrid mesh, a hybrid algorithm of central and upwind schemes is developed that focuses on the properties of high Mach number cavity flow. The cavity first-order and second-order dominant frequencies are calculated and verified by the numerical example of the high Mach number cavity standard model, with an error of no more than 5% compared with the experiment data. The cavity noise intensity has an error of no more than 10 dB compared with the experiment data, which verified the reliability of the method. The studies on the fluctuation characteristics of high Mach number (Ma> 2) cavity flow has been carried out with the numerical simulation method. The impact of various Mach numbers on the cavity's sound pressure level was examined, and it was also described how the cavity fluctuates acoustically at various Mach numbers. It is shown that the coupling between shear layer dynamics and cavity acoustics decreases at high Mach number conditions, and the physical mechanism of cavity oscillation changes from the vortex acoustic resonance mechanism of the Rossiter model to the closed-box acoustic mechanism as the Mach number increases.

     

  • loading
  • [1]
    LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. doi: 10.1016/j.paerosci.2010.11.002
    [2]
    欧阳绍修, 刘学强, 张宝兵. DES方法模拟空腔流动及噪声分析[J]. 南京亚洲成人在线一二三四五六区学报, 2012, 44(6): 792-796.

    OUYANG S X, LIU X Q, ZHANG B B. Cavity flow simulation and noise analysis using DES method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 792-796(in Chinese).
    [3]
    KRISGNAMUTY K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic: NACATN-3487[R]. Washington, D. C. : NASA, 1955.
    [4]
    ROSHKO A. Some measurements of flow in a rectangular cut-out: NACA TN3488[R]. Washington, D. C. : NASA, 1955.
    [5]
    MAULL D J, EAST L F. Three-dimensional flow in cavities[J]. Journal of Fluid Mechanics, 1963, 16: 620-632. doi: 10.1017/S0022112063001014
    [6]
    ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[J]. Royal Aircraft Establishment Technical Report, 1964, 3438: 8-12.
    [7]
    HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities, physical mechanisms and suppression concepts: TR-74-133 [R]. Ohio: AFFDL, 1975.
    [8]
    RAMAN G, ENVIA E, BENCIC T. Tone noise and nearfield pressure produced by jet-cavity interaction[C]// Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
    [9]
    UKEILEY L, MURRAY N. Velocity and surface pressure measurements in an open cavity[J]. Experiments in Fluids, 2005, 38(5): 656-671. doi: 10.1007/s00348-005-0948-x
    [10]
    MURRAY R, ELLIOTT G. The compressible shear layer over a two-dimensional cavity[C]// Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
    [11]
    KAUFMAN L G, MACIULAITIS A, CLARK R L. Mach 0.6 to 3.0 flows over rectangular cavities: AFWAL TR-82-3112 [R]. Wright-Patterson: Airforce Wright Aeronautical Laborattories, 1983.
    [12]
    ZHANG X, RONA A, EDWARDS J A. An observation of pressure waves around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4): 771-778. doi: 10.1006/jsvi.1998.1635
    [13]
    RIZZETTA D P, VISBAL M R. Large-eddy simulation of supersonic cavity flow fields including flow control[J]. AIAA Journal, 2003, 41(8): 1452-1462. doi: 10.2514/2.2128
    [14]
    CHANG K, CONSTANTINESCU G, PARK S O. Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer[J]. Journal of Fluid Mechanics, 2006, 561: 113. doi: 10.1017/S0022112006000735
    [15]
    PENG S H, LEICHER S. DES and hybrid RANS–LES modelling of unsteady pressure oscillations and flow features in a rectangular cavity[C]//Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin: Springer, 2008: 132-141.
    [16]
    HAMED A, BASU D, DAS K. Detached eddy simulations of supersonic flow over cavity[C]// Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
    [17]
    刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475-483.

    LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 475-483(in Chinese).
    [18]
    马小亮, 杨国伟. 凹腔非定常特性的数值模拟[J]. 计算物理, 2010, 27(3): 375-380.

    MA X L, YANG G W. Simulation of unsteady cavity flow[J]. Chinese Journal of Computational Physics, 2010, 27(3): 375-380(in Chinese).
    [19]
    司海青, 王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京亚洲成人在线一二三四五六区学报, 2006, 38(5): 595-599.

    SI H Q, WANG T G. Influence of boundary condition on 3-D cavity flow-induced oscillations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(5): 595-599(in Chinese).
    [20]
    王一丁, 郭亮, 童明波, 等. 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015, 36(1): 213-222.

    WANG Y D, GUO L, TONG M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 213-222(in Chinese).
    [21]
    STRELETS M. Detached eddy simulation of massively separated flows[C]// Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
    [22]
    肖志祥, 罗堃宇, 刘健. 宽速域RANS-LES混合方法的发展及应用[J]. 空气动力学学报, 2017, 35(3): 338-353.

    XIAO Z X, LUO K Y, LIU J. Developments and applications of hybrid RANS-LES methods for wide-speed-range flows[J]. Acta Aerodynamica Sinica, 2017, 35(3): 338-353(in Chinese).
    [23]
    肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述[J]. 航空学报, 2020, 41(6): 523451.

    XIAO Z X, CUI W Y, LIU J, et al. Review of numerical research on unsteady flows of the new generation fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523451(in Chinese).
    [24]
    TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modeling[C]//European Conference on Computational Fluid Dynamics. Delft: TU Delft, 2006: 32-410.
    [25]
    BAUER R C, DIX R E. Engineering model of unsteady flow in a cavity: AEDC-TR-91-17 [R]. Arnold : Arnold Engineering Development Center, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(724) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return