| Citation: | NIE X H,JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2119-2128 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0582 |
Aiming at the problems of relatively few studies on actuator fault diagnosis of on orbit spacecraft, relatively simple background modeling for attitude control system and weak algorithm autonomy, an autonomous fault diagnosis method for spacecraft flywheel based on kernel principal component analysis (KPCA) is proposed. Firstly, the three-axis stable attitude control system of rigid spacecraft using flywheel group is established. Secondly, the flywheel servo system is established in torque mode and speed mode, and the common faults and models of flywheel are given. Then, in the above mode, the input and output differential data of flywheel group are collected for homologous dimension expansion. By improving the normalization criterion of eigenvector, the classical KPCA statistical method is optimized, and a comprehensive index is established. By comparing whether the index exceeds the limit to judge whether there is a fault, the subjective focus on a single index is reduced. Finally, based on the classical contribution graph method, the fault flywheels are located by tracing source and merging fault comprehensive contribution rate. Simulation results show that this method can realize autonomous fault diagnosis of spacecraft flywheel, and the accuracy of the two modes increases by an average of about 40.94% and 22.23% compared to traditional methods. It is suitable for single point fault, multi-point fault, and minor fault.
| [1] |
闻新, 张兴旺, 朱亚萍, 等. 智能故障诊断技术: MATLAB应用[M]. 北京: 北京亚洲成人在线一二三四五六区出版社, 2015: 10-18.
WEN X, ZHANG X W, ZHU Y P, et al. Intelligent fault diagnosis technology: Application of MATLAB[M]. Beijing: Beihang University Press, 2015: 10-18(in Chinese).
|
| [2] |
HWANG I, KIM S, KIM Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636-653. doi: 10.1109/TCST.2009.2026285
|
| [3] |
FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy[J]. Automatica, 1990, 26(3): 459-474. doi: 10.1016/0005-1098(90)90018-D
|
| [4] |
沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6): 647-656. doi: 10.3873/j.issn.1000-1328.2020.06.002
SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6): 647-656(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.06.002
|
| [5] |
JACKSON J E, MUDHOLKAR G S. Control procedures for residuals associated with principal component analysis[J]. Technometrics, 1979, 21(3): 341-349. doi: 10.1080/00401706.1979.10489779
|
| [6] |
NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch processes[J]. Technometrics, 1995, 37(1): 41-59. doi: 10.1080/00401706.1995.10485888
|
| [7] |
DUNIA R, JOE QIN S. Subspace approach to multidimensional fault identification and reconstruction[J]. AIChE Journal, 1998, 44(8): 1813-1831. doi: 10.1002/aic.690440812
|
| [8] |
李楠, 张云燕, 李言俊. 一种自旋稳定卫星姿态传感器数据异常的诊断方法[J]. 宇航学报, 2011, 32(6): 1327-1332. doi: 10.3873/j.issn.1000-1328.2011.06.019
LI N, ZHANG Y Y, LI Y J. A diagnosis algorithm for abnormal data of spin-stabilized satellite attitude sensors[J]. Journal of Astronautics, 2011, 32(6): 1327-1332(in Chinese). doi: 10.3873/j.issn.1000-1328.2011.06.019
|
| [9] |
LI Z Z, LIU G H, ZHANG R, et al. Fault detection, identification and reconstruction for gyroscope in satellite based on independent component analysis[J]. Acta Astronautica, 2011, 68(7-8): 1015-1023. doi: 10.1016/j.actaastro.2010.09.010
|
| [10] |
龚学兵, 王日新, 徐敏强. 飞轮传感器的高斯混合模型故障检测方法[J]. 宇航学报, 2015, 36(6): 699-705.
GONG X B, WANG R X, XU M Q. Gaussian mixed model-based fault detection method for flywheel sensor[J]. Journal of Astronautics, 2015, 36(6): 699-705(in Chinese).
|
| [11] |
龚学兵. 基于数据驱动方法的飞轮系统早期故障检测[D]. 哈尔滨 : 哈尔滨工业大学, 2017 : 42-28.
GONG X B. Early fault detection of flywheel system based on data driven method[D]. Harbin : Harbin Institute of Technology, 2017 : 42-48(in Chinese).
|
| [12] |
INUI M, KAWAHARA Y, GOTO K, et al. Adaptive limit checking for spacecraft telemetry data using kernel principal component analysis[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7(26): 11-16.
|
| [13] |
FUJIMAKI R, YAIRI T, MACHIDA K. An approach to spacecraft anomaly detection problem using kernel feature space[C]//Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM, 2005: 401-410.
|
| [14] |
YAIRI T, TAKEISHI N, ODA T, et al. A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1384-1401. doi: 10.1109/TAES.2017.2671247
|
| [15] |
王大轶, 屠园园, 符方舟, 等. 航天器控制系统的自主诊断重构技术[J]. 控制理论与应用, 2019, 36(12): 1966-1978.
WANG D Y, TU Y Y, FU F Z, et al. Autonomous diagnosis and reconfiguration technology of spacecraft control system[J]. Control Theory & Applications, 2019, 36(12): 1966-1978.
|
| [16] |
屠善澄, 陈义庆, 严拱添, 等. 卫星姿态动力学与控制[M]. 北京: 中国宇航出版社, 1999: 192-193.
TU S C, CHEN Y Q, YANG G T, et al. Satellite attitude dynamics and control[M]. Beijing: China Astronautic Publishing House, 1999: 192-193(in Chinese).
|
| [17] |
马星宇. 基于反作用飞轮和磁力矩器的卫星姿态控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 23-25.
MA X Y. Study on the attitude control system of satellite with reaction wheels and magnetotors[D]. Harbin: Harbin Institute of Technology, 2013: 23-25(in Chinese).
|
| [18] |
BIALKE B. High fidelity mathematical modeling of reaction wheel performance[J]. Advances in the Astronautical Science, 1998(98): 483-496.
|
| [19] |
金磊, 徐世杰. 基于扩张状态观测器的飞轮故障检测与恢复[J]. 北京亚洲成人在线一二三四五六区学报, 2008, 34(11): 1272-1275. doi: 10.13700/j.bh.1001-5965.2008.11.013
JIN L, XU S J. Extended state observer-based fault detection and recovery for flywheels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1272-1275(in Chinese). doi: 10.13700/j.bh.1001-5965.2008.11.013
|
| [20] |
谭春林, 胡太彬, 王大鹏, 等. 国外航天器在轨故障统计与分析[J]. 航天器工程, 2011, 20(4): 130-136. doi: 10.3969/j.issn.1673-8748.2011.04.029
TAN C L, HU T B, WANG D P, et al. Analysis on foreign spacecraft in-orbit failures[J]. Spacecraft Engineering, 2011, 20(4): 130-136(in Chinese). doi: 10.3969/j.issn.1673-8748.2011.04.029
|
| [21] |
KU W F, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196. doi: 10.1016/0169-7439(95)00076-3
|
| [22] |
YUE H H, QIN S J. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4403-4414.
|
| [23] |
FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2005, 27(8): 861-874.
|
| [24] |
RAKOTOMAMONJY A. Variable selection using SVM-based criteria[J]. Journal of Machine Learning Research, 2003, 3: 1357-1370.
|
| [25] |
李智. 基于主元分析的故障诊断方法研究及应用[D]. 沈阳: 东北大学, 2012 : 44-46.
LI Z. Research of fault diagnosis method based on principle component analysis and application[D]. Shenyang: Northeastern Univerisity, 2012 : 44-46(in Chinese).
|
| [26] |
袁泉, 何英姿, 邢琰, 等. 基于线性最小均方差估计的星敏感器故障诊断[J]. 空间控制技术与应用, 2013, 39(2): 30-35. doi: 10.3969/j.issn.1674-1579.2013.02.006
YUAN Q, HE Y Z, XING Y, et al. Fault diagnosis for sensors based on linear minimum mean square filter[J]. Aerospace Control and Application, 2013, 39(2): 30-35(in Chinese). doi: 10.3969/j.issn.1674-1579.2013.02.006
|
| [27] |
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. doi: 10.1115/1.3662552
|