| Citation: | WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0581 |
To solve the accuracy of fault identification of wind turbines under complex working conditions, coupling, and uncertainty, an AE-BN fault diagnosis method based on a auto-encoder (AE) and Bayesian network (BN) is proposed. AE is used to extract the characteristics of the current signal, and the characteristic component that can highly characterize the signal is obtained; based on the causal relationship between fault and feature, a three-layer BN composed of fault location, fault state, and fault feature is established; The wind turbine fault diagnostic model is then established, the uncertainty problem in fault diagnosis is solved, and the precision of multi fault diagnosis is enhanced by combining the characteristic component of AE with the topology of BN. Experimental results show that the proposed method can analyze and diagnose fault characteristic signals and accurately identify different fault types, which has obvious advantages over other algorithms.
| [1] |
曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860. doi: 10.13335/j.1000-3673.pst.2017.2311
ZENG J, CHEN Y F, YANG P, et al. Review of fault diagnosis methods of large-scale wind turbines[J]. Power System Technology, 2018, 42(3): 849-860(in Chinese). doi: 10.13335/j.1000-3673.pst.2017.2311
|
| [2] |
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. doi: 10.3901/JME.2020.17.091
CHEN S Q, PENG Z K, ZHOU P. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107(in Chinese). doi: 10.3901/JME.2020.17.091
|
| [3] |
唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. doi: 10.7652/xjtuxb201505012
TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81(in Chinese). doi: 10.7652/xjtuxb201505012
|
| [4] |
ZHONG J, YANG K. Failure prediction for linear ball bearings based on wavelet transformation and self-organizing map[C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE Press, 2018: 34-38.
|
| [5] |
张超, 陈建军, 郭迅. 基于EMD能量熵和支持向量机的齿轮故障诊断方法[J]. 振动与冲击, 2010, 29(10): 216-220. doi: 10.3969/j.issn.1000-3835.2010.10.004
ZHANG C, CHEN J J, GUO X. A gear fault diagnosis method based on EMD energy entropy and SVM[J]. Journal of Vibration and Shock, 2010, 29(10): 216-220(in Chinese). doi: 10.3969/j.issn.1000-3835.2010.10.004
|
| [6] |
CHIANG L H, KOTANCHEK M E, KORDON A K, et al. Fault diagnosis based on Fisher discriminant analysis and support vector machines[J]. Computers & Chemical Engineering, 2004, 28(8): 1389-1401.
|
| [7] |
SHAO S, MCALEER S, YAN R, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455. doi: 10.1109/TII.2018.2864759
|
| [8] |
SHAO H, JIANG H, ZHAO H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. doi: 10.1016/j.ymssp.2017.03.034
|
| [9] |
陈东超. 基于贝叶斯网络的汽轮发电机组故障诊断方法及应用研究[D]. 北京: 华北电力大学(北京), 2018.
CHEN D C. Research on methods and application of fault diagnosis for turbo-generator unit based on bayesian network[D]. Beijing: North China Electric Power University (Beijing), 2018(in Chinese).
|
| [10] |
王双成, 张立, 郑飞. 异步动态贝叶斯网络分类器研究[J]. 计算机学报, 2020, 43(9): 1737-1754. doi: 10.11897/SP.J.1016.2020.01737
WANG S C, ZHANG L, ZHENG F. Asynchronous dynamic Bayesian network classifiers[J]. Chinese Journal of Computers, 2020, 43(9): 1737-1754(in Chinese). doi: 10.11897/SP.J.1016.2020.01737
|
| [11] |
仝兆景, 芦彤, 秦紫霓. 基于PSO-VMD与贝叶斯网络的滚动轴承故障诊断[J]. 河南理工大学学报(自然科学版), 2021, 40(1): 95-104. doi: 10.16186/j.cnki.1673-9787.2019060034
TONG Z J, LU T, QIN Z N. Fault diagnosis of rolling bearing based on PSO-VMD and Bayesian network[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(1): 95-104(in Chinese). doi: 10.16186/j.cnki.1673-9787.2019060034
|
| [12] |
王金鑫, 王忠巍, 马修真, 等. 基于贝叶斯网络的柴油机润滑系统多故障诊断[J]. 控制与决策, 2019, 34(6): 1187-1194. doi: 10.13195/j.kzyjc.2017.1399
WANG J X, WANG Z W, MA X Z, et al. Diagnosis of multiple faults of diesel engine lubrication system based on Bayesian networks[J]. Control and Decision, 2019, 34(6): 1187-1194(in Chinese). doi: 10.13195/j.kzyjc.2017.1399
|
| [13] |
尹爱军, 王昱, 戴宗贤, 等. 基于变分自编码器的轴承健康状态评估[J]. 振动、测试与诊断, 2020, 40(5): 1011-1016.
YIN A J, WANG Y, DAI Z X, et al. Evaluation method of bearing health state based on variational auto-encoder[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(5): 1011-1016(in Chinese).
|
| [14] |
孙叶, 王钢, 魏东. 贝叶斯网络在智能电网研究中的应用[J]. 自动化应用, 2020(7): 108-109. doi: 10.19769/j.zdhy.2020.07.039
SUN Y, WANG G, WEI D. The application of Bayesian network in the research of smart grid[J]. Automation Application, 2020(7): 108-109(in Chinese). doi: 10.19769/j.zdhy.2020.07.039
|
| [15] |
CAI B, HUANG L, XIE M. Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2227-2240. doi: 10.1109/TII.2017.2695583
|
| [16] |
李硕豪, 张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32(3): 641-646. doi: 10.3969/j.issn.1001-3695.2015.03.001
LI S H, ZHANG J. Review of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32(3): 641-646(in Chinese). doi: 10.3969/j.issn.1001-3695.2015.03.001
|
| [17] |
WEN Z, KVETON B, ERIKSSON B, et al. Sequential Bayesian search[C]//Proceedings of the 30th International Conference on Machine Learning. New York: ACM, 2013: 226-234.
|
| [18] |
CHENG J, BELL D A, LIU W. An algorithm for Bayesian belief network construction from data[C]//Proceedings of the 6th International Workshop on Artificial Intelligence and Statistics. Amsterdam: Elesvier, 1997: 83-90.
|
| [19] |
CONSTANTINOU A C, LIU Y, CHOBTHAM K, et al. Large-scale empirical validation of Bayesian network structure learning algorithms with noisy data[J]. International Journal of Approximate Reasoning, 2021, 131: 151-188. doi: 10.1016/j.ijar.2021.01.001
|
| [20] |
BEHJATI S, BEIGY H. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103617. doi: 10.1016/j.engappai.2020.103617
|
| [21] |
刘浩然, 王念太, 王毅, 等. 基于V-结构&对数似然函数定向与禁忌爬山的贝叶斯网络结构算法[J]. 电子与信息学报, 2021, 43(11): 3272-3281. doi: 10.11999/JEIT210032
LIU H R, WANG N T, WANG Y, et al. Bayesian network structure algorithm based on V-structure & Log-likelihood orientation and tabu hill climbing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3272-3281(in Chinese). doi: 10.11999/JEIT210032
|
| [22] |
LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification[C]//European Conference of the Prognostics and Health Management Society, 2016: 1-17.
|
| [23] |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|