Volume 49 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG P,LIU C H,ZHANG D N. Automatic modulation recognition method based on improved weight AdaBoost.M2 algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2089-2098 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0577
Citation: WANG P,LIU C H,ZHANG D N. Automatic modulation recognition method based on improved weight AdaBoost.M2 algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2089-2098 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0577

Automatic modulation recognition method based on improved weight AdaBoost.M2 algorithm

doi: 10.13700/j.bh.1001-5965.2021.0577
Funds:

Beijing Natural Science Foundation (4204102) 

More Information
  • Corresponding author: E-mail:liuchunhui2134@cqjj8.com
  • Received Date: 28 Sep 2021
  • Accepted Date: 29 Oct 2021
  • Publish Date: 11 Nov 2021
  • A signal modulation recognition method is proposed based on AdaBoost.M2 algorithm to address difficult identification of signals from the same family of modulation types and the poor generalization of the deep learning model. An improved method of sample weight is proposed to solve the problem that the learning rate of the weak learning algorithm is difficult to adapt to the weighted sample data in the case of large samples. The improved sample weight ensures that the order of magnitude of the training sample data remains unchanged after weighting, so that the algorithm pays more attention to the difficult classification samples, improving the comprehensive performance of the weak classifier. In addition, in view of the difficult classification problem caused by the statistical characteristics of some samples easily submerged in noise, a random feature clipping method is proposed to avoid much attention given to abnormal features. This method reduces the negative impact of extremely difficult classification samples on the performance of AdaBoost.M2 algorithm, improving the generalization ability of the algorithm. Experimental verification with low signal-to-noise ratio data is conducted. Finally, given the fact that the signals of the same family of modulation types are difficult to classify, the signals of the same family are selected for model training and testing. Results show that the improved AdaBoost.M2 algorithm increases the test set accuracy of PSK family and QAM family by 8.5 and 11.25% respectively compared with the single CLDNN algorithm, and by 8.25 and 6.5% respectively compared with the classical AdaBoost.M2 algorithm.

     

  • loading
  • [1]
    李晓峰, 周宁, 周亮. 通信原理[M]. 2版. 北京: 清华大学出版社, 2014: 1-10.

    LI X F, ZHOU N, ZHOU L. Communication principle[M]. 2nd ed. Beijing: Tsinghua University Press, 2014: 1-10(in Chinese).
    [2]
    高文欢. 浅析无线电信号通用解调和调制识别技术[J]. 中国无线电, 2015(3): 61-62. doi: 10.3969/j.issn.1672-7797.2015.03.037

    GAO W H. Analysis on general demodulation and modulation identification technology of radio signals[J]. China Radio, 2015(3): 61-62(in Chinese). doi: 10.3969/j.issn.1672-7797.2015.03.037
    [3]
    程汉文, 朱雷, 吴乐南. 基于累计量的干扰信号调制识别算法[J]. 电子与信息学报, 2009, 31(7): 1741-1745.

    CHENG H W, ZHU L, WU L N. Modulation classification algorithm for jamming signal based on cumulant[J]. Journal of Electronics & Information Technology, 2009, 31(7): 1741-1745(in Chinese).
    [4]
    屈明, 张效义. 基于频域处理的信号检测和自动调制识别算法[J]. 数据采集与处理, 2006, 21(S1): 19-21. doi: 10.3969/j.issn.1004-9037.2006.z1.005

    QU M, ZHANG X Y. Signal detection and classification algorithm based on frequency region processing[J]. Journal of Data Acquisition & Processing, 2006, 21(S1): 19-21(in Chinese). doi: 10.3969/j.issn.1004-9037.2006.z1.005
    [5]
    潘宝凤. 通信侦察系统总体设计技术[J]. 电讯技术, 2011, 51(6): 1-5. doi: 10.3969/j.issn.1001-893x.2011.06.001

    PAN B F. Overall design of communication reconnaissance system[J]. Telecommunication Engineering, 2011, 51(6): 1-5(in Chinese). doi: 10.3969/j.issn.1001-893x.2011.06.001
    [6]
    WU H C, SAQUIB M, YUN Z F. Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3098-3105. doi: 10.1109/TWC.2008.070015
    [7]
    张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208-2215. doi: 10.11999/JEIT190320

    ZHANG T Q, FAN C C, GE W Y, et al. MIMO signal modulation recognition algorithm based on ICA and feature extraction[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2208-2215(in Chinese). doi: 10.11999/JEIT190320
    [8]
    NANDI A K, AZZOUZ E E. Modulation recognition using artificial neural networks[J]. Signal Processing, 1997, 56(2): 165-175. doi: 10.1016/S0165-1684(96)00165-X
    [9]
    MUSTAFA H, DOROSLOVACKI M. Digital modulation recognition using support vector machine classifier[C]//Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE Press, 2005: 2238-2242.
    [10]
    FEHSKE A, GAEDDERT J, REED J H. A new approach to signal classification using spectral correlation and neural networks[C]//First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2005: 144-150.
    [11]
    HEADLEY W C, REED J D, DA SILVA C R C M. Distributed cyclic spectrum feature-based modulation classification[C]//2008 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2008: 1200-1204.
    [12]
    O’SHEA T J, HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575. doi: 10.1109/TCCN.2017.2758370
    [13]
    KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017: 1-3.
    [14]
    陈曦. 基于深度学习的数字信号调制方式识别方法研究[D]. 西安: 西安电子科技大学, 2018: 9-67.

    CHEN X. Research on digital signal modulation recognition method based on deep learning[D]. Xi'an: Xidian University, 2018: 9-67 (in Chinese).
    [15]
    张劭. 基于深度学习的未知调制类型的信号识别[D]. 西安: 西安电子科技大学, 2018: 7-54.

    ZHANG S. Signal recognition of unknown modulation type based on deep learning[D]. Xi'an: Xidian University, 2018: 7-54(in Chinese).
    [16]
    O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks. Berlin: Springer, 2016: 213-226.
    [17]
    ZHANG D N, DING W R, ZHANG B C, et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018, 18(3): 924. doi: 10.3390/s18030924
    [18]
    RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445. doi: 10.1109/TCCN.2018.2835460
    [19]
    O’SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179. doi: 10.1109/JSTSP.2018.2797022
    [20]
    LIU X Y, YANG D Y, EL GAMAL A. Deep neural network architectures for modulation classification[C]// 2017 51st Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE Press, 2018: 915-919.
    [21]
    张宇. 基于深度学习的通信信号调制识别算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 7-59.

    ZHANG Y. Research on modulation recognition algorithm of communication signal based on deep learning[D]. Harbin: Harbin Engineering University, 2019: 7-59(in Chinese).
    [22]
    陶桂平, 韩立岩. 最大熵原理在不完全信息博弈中的应用[J]. 首都经济贸易大学学报, 2011, 13(3): 67-71. doi: 10.3969/j.issn.1008-2700.2011.03.010

    TAO G P, HAN L Y. The application of the maximum entropy principle in the incomplete information game[J]. Journal of Capital University of Economics and Business, 2011, 13(3): 67-71(in Chinese). doi: 10.3969/j.issn.1008-2700.2011.03.010
    [23]
    廖红文, 周德龙. AdaBoost及其改进算法综述[J]. 计算机系统应用, 2012, 21(5): 240-244. doi: 10.3969/j.issn.1003-3254.2012.05.056

    LIAO H W, ZHOU D L. Review of AdaBoost and its improvement[J]. Computer Systems & Applications, 2012, 21(5): 240-244(in Chinese). doi: 10.3969/j.issn.1003-3254.2012.05.056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views(480) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return