Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0452
Citation: ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0452

Inverted residual target detection algorithm based on LGC

doi: 10.13700/j.bh.1001-5965.2021.0452
Funds:

Key-Area Research and Development Program of Guangdong Province (2019B010137006); National Natural Science Foundation of China (61702347,62027801,61972267); Natural Science Foundation of Hebei Province of China (F2017210161) 

More Information
  • Corresponding author: E-mail:zhangyunzuo888@sina.com
  • Received Date: 10 Aug 2021
  • Accepted Date: 09 Oct 2021
  • Publish Date: 02 Nov 2021
  • Target detection based on deep learning is a research hotspot in computer vision. Although existing mainstream detection models usually increase the depth and width of the network to acquire better detection results, it is unamiable to suffer from parameters increasing and detection rate decreasing. To address this problem, an efficient lightweight Ghost convolution (LGC) model, which aims to balance the detection accuracy and speed, and obtain more feature maps with fewer parameters, was proposed by referring to the lightweight idea of Ghost convolution and group convolution. CSPDarkNet53 that was redesigned with the above convolution and an inverted residual structure was introduced to generate an inverted residual feature extraction network to improve the global feature information extraction capability of the model. On this basis, the inverted residual feature extraction network was used as the backbone network of YOLOv4, and depthwise separable convolution was used to reduce the parameters. To improve the overall performance of the algorithm, an inverted residual target detection algorithm was proposed. Experimental results show that compared with the current mainstream target detection algorithm, the proposed algorithm has prominent advantages in the number of model parameters and detection speed under the premise of similar detection accuracy.

     

  • loading
  • [1]
    赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654. doi: 10.11834/jig.190307

    ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654(in Chinese). doi: 10.11834/jig.190307
    [2]
    REDMON J, FARHADI A. YOLOv3: An incremental improve- ment [EB/OL]. (2018-04-08) [2021-08-01].
    [3]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2021-08-01].
    [4]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [5]
    LI X Y, LV Z G, WANG P, et al. Combination weighted clustering algorithms in cognitive radio networks[J]. Concurrency and Computation:Practice and Experience, 2020, 32(23): e5516.
    [6]
    张云佐, 杨攀亮, 李汶轩. 基于改进SSD算法的铁路隧道漏缆卡具检测[J]. 激光与光电子学进展, 2021, 58(22): 2215005.

    ZHANG Y Z, YANG P L, LI W X. Leaky coaxial cable fixture detection based on improved SSD algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2215005(in Chinese).
    [7]
    ZHOU Q, ZHONG B, ZHANG Y, et al. Deep alignment network based multi-person tracking with occlusion and motion reasoning[J]. IEEE Transactions on Multimedia, 2018, 21(5): 1183-1194.
    [8]
    崔家礼, 曹衡, 张亚明, 等. 一种复杂场景下的人眼检测算法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(1): 38-44. doi: 10.13700/j.bh.1001-5965.2019.0641

    CUI J L, CAO H, ZHANG Y M, et al. A human eye detection algorithm in complex scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 38-44(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0641
    [9]
    符惠桐, 王鹏, 李晓艳, 等. 面向移动目标识别的轻量化网络模型[J]. 西安交通大学学报, 2021, 55(7): 1-9. doi: 10.7652/xjtuxb202107014

    FU H T, WANG P, LI X Y, et al. Lightweight network model for moving object recognition[J]. Journal of Xi’an Jiaotong University, 2021, 55(7): 1-9(in Chinese). doi: 10.7652/xjtuxb202107014
    [10]
    HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2021-08-01].
    [11]
    MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 116-131.
    [12]
    TAN M, LE Q V. MixConv: Mixed depthwise convolutional kernels[EB/OL]. (2019-12-01) [2021-08-01].
    [13]
    HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1580-1589.
    [14]
    SU Z, FANG L, KANG W, et al. Dynamic group convolution for accelerating convolutional neural networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 138-155.
    [15]
    WEI H, WANG Z, HUA G. Dynamically mixed group convolution to lighten convolution operation[C]//2021 4th International Conference on Artificial Intelligence and Big Data. Piscataway: IEEE Press, 2021: 203-206.
    [16]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 17355762.
    [17]
    XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1492-1500.
    [18]
    孙琪翔, 何宁, 张聪聪, 等. 轻量级图卷积人体骨架动作识别方法[J]. 计算机工程, 2022, 48(5): 306-313.

    SUN Q X, HE N, ZHANG C C, et al. A lightweight graph convolution human skeleton action recognition method[J]. Computer Engineering, 2022, 48(5): 306-313(in Chinese).
    [19]
    罗禹杰, 张剑, 陈亮, 等. 基于自适应空间特征融合的轻量化目标检测算法设计[J]. 激光与光电子学进展, 2022, 59(4): 302-312.

    LUO Y J, ZHANG J, CHEN L, et al. Design of lightweight target detection algorithm based on adaptive spatial feature fusion[J]. Laser & Optoelectronics Progress, 2022, 59(4): 302-312(in Chinese).
    [20]
    WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 390-391.
    [21]
    SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
    [22]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Comp- uter Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [23]
    曹远杰, 高瑜翔. 基于GhostNet残差结构的轻量化饮料识别网络[J]. 计算机工程, 2022, 48(3): 310-314. doi: 10.19678/j.issn.1000-3428.0059966

    CAO Y J, GAO Y X. A lightweight beverage recognition network based on GhostNet residual structure[J]. Computer Engineering, 2022, 48(3): 310-314(in Chinese). doi: 10.19678/j.issn.1000-3428.0059966
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(492) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return