| Citation: | TANG G H,WANG N D,LIU S T,et al. Experimental study on influence of filter mesh size on radial permeability of sand[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1516-1522 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0451 |
Based on the self-developed radial penetration tester, a series of seepage failure tests and stable seepage tests on sand were carried out under various filter pore size conditions to study the influence of filter pore size on the radial permeation characteristics of sand. The influences of filter pore size on critical water head difference, seepage flow, mass loss of soil particles and radial permeability coefficient of sand were analyzed. The results show that the filter pore size has an important effect on the radial permeability of sand; The critical water head difference can be increased by decreasing the filter pore size in the seepage failure tests; Sand’s permeability coefficient can be efficiently decreased in the stable seepage tests by reducing the filter pore size; The mass loss of fine particles precedes that of coarse particles. If there is none of the mass loss of soil particles, the seepage velocity will be stable.
| [1] |
KE L, TAKAHASHI A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J]. Soils and Found, 2012, 52(4): 698-711. doi: 10.1016/j.sandf.2012.07.010
|
| [2] |
MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
|
| [3] |
田大浪, 谢强, 宁越, 等. 间断级配砂砾石土的渗透变形试验研究[J]. 岩土力学, 2020, 41(11): 3663-3670. doi: 10.16285/j.rsm.2020.0253
TIAN D L, XIE Q, NING Y, et al. Experimental investigation on seepage deformation of gap-graded sand-gravel soils[J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670(in Chinese). doi: 10.16285/j.rsm.2020.0253
|
| [4] |
SION P V, LUCA M, AVRAM M. Researches concerning the configuration of geotextiles in the execution of regulatory works in the riverbeds[J]. The Annals of "Dunarea de Jos" University of Galati. Fascicle IX, Metallurgy and Materials Science, 2020, 43(3): 54-60.
|
| [5] |
FANNIN J. Karl Terzaghi: From theory to practice in geotechnical filter design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 267-276. doi: 10.1061/(ASCE)1090-0241(2008)134:3(267)
|
| [6] |
杨佩瑶, 王红雨, 张刚, 等. 不同反滤准则及其在宁南山区水库设计中的应用[J]. 水利水运工程学报, 2021(1): 86-94. doi: 10.12170/20191227001
YANG P Y, WANG H Y, ZHANG G, et al. Different filter design criteria and their applications to reservoir design in mountainous areas of southern Ningxia[J]. Hydro-Science and Engineering, 2021(1): 86-94(in Chinese). doi: 10.12170/20191227001
|
| [7] |
段国军, 张顺福, 介玉新. 滤网孔径和层数对反滤保土效果的影响分析[J]. 水利水电技术, 2020, 51(1): 39-45. doi: 10.13928/j.cnki.wrahe.2020.01.005
DUAN G J, ZHANG S F, JIE Y X. Influence of pore size and filter layers on soil retention effect[J]. Water Resources and Hydropower Engineering, 2020, 51(1): 39-45(in Chinese). doi: 10.13928/j.cnki.wrahe.2020.01.005
|
| [8] |
康顺祥, 陆世强. 天然滤层模型[J]. 防渗技术, 1997, 3(4): 1-5.
KANG S X, LU S Q. Modal of natural filtering layer[J]. Technique of Seepage Prevention, 1997, 3(4): 1-5(in Chinese).
|
| [9] |
WATSON P D J, JOHN N W M. Geotextile filter design and simulated bridge formation at the soil-geotextile interface[J]. Geotextiles and Geomembranes, 1999, 17(5-6): 265-280. doi: 10.1016/S0266-1144(99)00013-8
|
| [10] |
朱积军, 简鸿福, 吕辉. 反滤土工布淤堵对土坝渗流稳定影响分析[J]. 水利规划与设计, 2019(6): 99-101. doi: 10.3969/j.issn.1672-2469.2019.06.027
ZHU J J, JIAN H F, LV H. Analysis of influence of anti-filter geotextiles silting on seepage stability of earth dam[J]. Water Resources Planning and Design, 2019(6): 99-101(in Chinese). doi: 10.3969/j.issn.1672-2469.2019.06.027
|
| [11] |
唐正涛, 孙爱国, 熊荣军, 等. 模拟现场工况条件下的无纺布淤堵试验研究[J]. 水运工程, 2017(5): 87-91. doi: 10.3969/j.issn.1002-4972.2017.05.016
TANG Z T, SUN A G, XIONG R J, et al. Clogging tests study on non-woven fabrics under simulated on-site operating conditions[J]. Port & Waterway Engineering, 2017(5): 87-91(in Chinese). doi: 10.3969/j.issn.1002-4972.2017.05.016
|
| [12] |
杨春和, 李泽华, 冒海军, 等. 尾矿坝排渗系统淤堵机理试验研究[J]. 广西大学学报(自然科学版), 2019, 44(3): 845-854. doi: 10.13624/j.cnki.issn.1001-7445.2019.0845
YANG C H, LI Z H, MAO H J, et al. Experimental study on the clogging mechanism of drainage system in tailings dam[J]. Journal of Guangxi University(Natural Science Edition), 2019, 44(3): 845-854(in Chinese). doi: 10.13624/j.cnki.issn.1001-7445.2019.0845
|
| [13] |
邓惠森. 岩土层垂向渗透系数与径向渗透系数[J]. 工程勘察, 1993, 21(1): 44-45.
DENG H S. The vertical permeability coefficient and radial permeability coefficient of strata[J]. Geotechnical Investigation and Surveying, 1993, 21(1): 44-45(in Chinese).
|
| [14] |
RICHARDS K S, REDDY K R. Experimental investigation of initiation of backward erosion piping in soils[J]. Géotechnique, 2012, 62(10): 933-942.
|
| [15] |
殷延洲, 崔一飞, 刘定竺, 等. 松散土体中细颗粒运移的微观过程研究[J]. 工程科学与技术, 2019, 51(4): 21-29.
YIN Y Z, CUI Y F, LIU D Z, et al. Study on microscopic process of fine particle migration in loose soil[J]. Advanced Engineering Sciences, 2019, 51(4): 21-29(in Chinese).
|