Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
CAO S Y,LIU J Q,SONG G T,et al. Borehole image detection of aero-engine based on self-attention semantic segmentation model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1504-1515 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0448
Citation: CAO S Y,LIU J Q,SONG G T,et al. Borehole image detection of aero-engine based on self-attention semantic segmentation model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1504-1515 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0448

Borehole image detection of aero-engine based on self-attention semantic segmentation model

doi: 10.13700/j.bh.1001-5965.2021.0448
Funds:

National Natural Science Foundation of China (U1533128,U1933202); Research on key technology of insitu minimally invasive intelligent maintenance for civil aviation engine (NS2020050) 

More Information
  • Corresponding author: E-mail:liujunqiang@nuaa.edu.cn
  • Received Date: 09 Aug 2021
  • Accepted Date: 29 Oct 2021
  • Publish Date: 18 Nov 2021
  • Aiming at the problems that small-scale faults tend to be missed and misjudged when detecting borehole images of aero-engines by using traditional methods, a new method based on self-attention semantic segmentation (SA-SS) model is proposed. Based on the overall architecture of classical semantic segmentation model DeepLabv3+, a lightweight MobileNetV2 is adopted as the backbone feature extraction network instead of Xception to reduce calculation by utilizing expansion-extraction-compression strategy; based on the idea of multi-layer cascade, original atrous spatial pyramid pooling structure of DeepLabv3+ is improved to keep more feature information in feature map; a self-attention mechanism is fused to establish the internal correlation of global pixels and strengthen the attention to details. The decoding layer of original DeepLabv3+ is improved; multi-scale spatial fusion method is introduced into low-level feature extraction to fuse multiple layers of features for classification. Experimental results show that compared with original DeepLabv3+, SegNet-ResNet and other methods, mean intersection over union and pixel accuracy and PA of SA-SS are increased by 4.10% and 3.92% respectively. Also, training cost and detection speed are improved by 24.43% and 5.11frame/s respectively.

     

  • loading
  • [1]
    陈果, 汤洋. 基于孔探图像纹理特征的航空发动机损伤识别方法[J]. 仪器仪表学报, 2008, 29(8): 1709-1713.

    CHEN G, TANG Y. Aero-engine interior damage recognition based on texture features of borescope image[J]. Chinese Journal of Scientific Instrument, 2008, 29(8): 1709-1713(in Chinese).
    [2]
    樊玮, 李晨炫, 邢艳, 等. 航空发动机损伤图像的二分类到多分类递进式检测网络[J]. 计算机应用, 2021, 41(8): 2352-2357.

    FAN W, LI C X, XING Y, et al. Two-class to multi-class progressive detection network for aero-engine damage images[J]. Journal of Computer Applications, 2021, 41(8): 2352-2357(in Chinese).
    [3]
    黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531.

    HUANG P, ZHENG Q, LIANG C. Overview of image segmentation methods[J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(6): 519-531(in Chinese).
    [4]
    杨宇. 数字图像处理在航空发动机孔探检测技术中的应用[D]. 沈阳: 东北大学, 2011: 8-15.

    YANG Y. Application of digital image processing in the borescope inspection technology of aeroengine[D]. Shenyang: Northeastern University, 2011: 8-15(in Chinese).
    [5]
    张勇, 刘冠军, 邱静. 基于图像自动测量的航空发动机故障检测技术研究[J]. 机械科学与技术, 2008, 27(2): 176-179. doi: 10.3321/j.issn:1003-8728.2008.02.009

    ZHANG Y, LIU G J, QIU J. Aeroengine’s fault detection technology based on image automatic measurement[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(2): 176-179(in Chinese). doi: 10.3321/j.issn:1003-8728.2008.02.009
    [6]
    张维亮. 航空发动机叶片损伤图像快速识别技术研究[D]. 沈阳: 沈阳亚洲成人在线一二三四五六区, 2014: 18-23.

    ZHANG W L. Research on technologies of aeroengine blades damage image fast recognition[D]. Shenyang: Shenyang Aerospace University, 2014: 18-23(in Chinese).
    [7]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [8]
    张新峰, 郭宇桐, 蔡轶珩, 等. 基于DCNN和全连接CRF的舌图像分割算法[J]. 北京亚洲成人在线一二三四五六区学报, 2019, 45(12): 2364-2374.

    ZHANG X F, GUO Y T, CAI Y H, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374(in Chinese).
    [9]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2019-04-10)[2021-08-14].
    [10]
    李浩. 基于图像识别的航空发动机叶片裂纹检测研究[D]. 成都: 电子科技大学, 2019: 17-23.

    LI H. Research on the blade crack detection of aero-engine based on image recognition[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 17-23(in Chinese).
    [11]
    KIM Y H, LEE J R. Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing[J]. Structural Health Monitoring, 2019, 18(5-6): 2020-2039. doi: 10.1177/1475921719830328
    [12]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2021-08-14].
    [13]
    陈永, 陈锦, 陶美风. 多尺度特征和注意力融合的生成对抗壁画修复[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(2): 254-264.

    CHEN Y, CHEN J, TAO M F. Mural inpainting generative adversarial networks based on multi-scale feature and attention fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 254-264(in Chinese).
    [14]
    NIU R G, SUN X, TIAN Y, et al. HMANet: Hybrid multiple attention network for semantic segmentation in aerial images[EB/OL]. (2020-03-25)[2021-08-14].
    [15]
    LI Z L, YUAN L M, XU H X, et al. Deep multi-instance learning with induced self-attention for medical image classification[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Piscataway: IEEE Press, 2021: 446-450.
    [16]
    SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
    [17]
    刘梦竹. 基于自注意力机制的图像语义分割算法研究[D]. 大连: 大连理工大学, 2020: 20.

    LIU M Z. The research on image semantic segmentation algorithm based on self-attention mechanism[D]. Dalian: Dalian University of Technology, 2020: 20(in Chinese).
    [18]
    蒲磊, 冯新喜, 侯志强, 等. 基于级联注意力机制的孪生网络视觉跟踪算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(12): 2302-2310.

    PU L, FENG X X, HOU Z Q, et al. Siamese network visual tracking algorithm based on cascaded attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2302-2310(in Chinese).
    [19]
    YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30)[2021-08-14].
    [20]
    李春虹, 卢宇. 基于深度可分离卷积的人脸表情识别[J]. 计算机工程与设计, 2021, 42(5): 1448-1454.

    LI C H, LU Y. Facial expression recognition based on depthwise separable convolution[J]. Computer Engineering and Design, 2021, 42(5): 1448-1454(in Chinese).
    [21]
    杨波, 陶青川, 董沛君. 改进Deeplab v3+网络的手术器械分割方法[J]. 计算机工程与应用, 2021, 57(7): 222-227. doi: 10.3778/j.issn.1002-8331.2001-0064

    YANG B, TAO Q C, DONG P J. Surgical instrument segmentation method based on improved Deeplab v3+ network[J]. Computer Engineering and Applications, 2021, 57(7): 222-227(in Chinese). doi: 10.3778/j.issn.1002-8331.2001-0064
    [22]
    HOFFMAN J, WANG D Q, YU F, et al. FCNs in the wild: Pixel-level adversarial and constraint-based adaptation[EB/OL]. (2016-12-08)[2021-08-14].
    [23]
    SI Y F, GONG D W, GUO Y, et al. An advanced spectral-spatial classification framework for hyperspectral imagery based on DeepLab v3+[J]. Applied Sciences, 2021, 11(12): 5703. doi: 10.3390/app11125703
    [24]
    IBRAHIM M S, VAHDAT A, RANJBAR M, et al. Semi-supervised semantic image segmentation with self-correcting networks[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 12712-12722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(665) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return