Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHOU C C,LIU H W,HE B M,et al. An efficient spatial interpolation method involving position shading[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1278-1286 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0443
Citation: ZHOU C C,LIU H W,HE B M,et al. An efficient spatial interpolation method involving position shading[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1278-1286 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0443

An efficient spatial interpolation method involving position shading

doi: 10.13700/j.bh.1001-5965.2021.0443
Funds:

National Natural Science Foundation of China (51975476); Natural Science Basic Research Program of Shaanxi (2020JM-135); Aeronautical Science Foundation of China (20200029053001) 

More Information
  • Corresponding author: E-mail:changcongzhou@nwpu.edu.cn
  • Received Date: 05 Aug 2021
  • Accepted Date: 07 Oct 2021
  • Publish Date: 01 Nov 2021
  • The inverse distance weight interpolation method has a wide range of applications in aerospace, but it only considers the distance relationship and ignores the azimuth relationship. This shortcoming is addressed by the adjusted inverse distance weight interpolation method with position shading, although it is only appropriate for plane interpolation. Based on the basic assumption of this method, according to the different spatial distribution of normalized sample points, this paper formulates a unified uniformity quantization standard based on the plane uniform angle and spherical uniform angle, and proposes a three-dimensional spatial interpolation method. This study proposes a new technique that significantly increases the effectiveness of interpolation by searching sample points close to the interpolation points. Through the calculation of test functions, it is found that compared with the inverse distance weight interpolation method, the error of the proposed method issignificantly reduced. The proposed method is applied to the aerodynamic loads interpolation of a civil aircraft nacelle, and the results show that the proposed method has the advantages of high efficiency and high accuracy.

     

  • loading
  • [1]
    李立州. 流固耦合数据的界面非线性降维传递[M]. 北京: 科学出版社, 2018: 8-9.

    LI L Z. Interfacial nonlinear dimensionality reduction transfer of fluid-solid coupled data[M]. Beijing: Science Press, 2018: 8-9(in Chinese).
    [2]
    樊一达, 毛玉明, 舒忠平, 等. 基于压力插值/力等效混合的火箭结构流-固载荷转换方法[J]. 航空学报, 2022, 43(3): 225053. doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203019

    FAN Y D, MAO Y M, SHU Z P, et al. Hybrid fluid-to-solid loads transformation based on pressure-interpolation/force-equivalence for launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 225053(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203019
    [3]
    DONE G T S. Interpolation of mode shapes: A matrix scheme using two-way spline curves[J]. Aeronautical Quarterly, 2016, 16(4): 333-349.
    [4]
    MENON S, SCHMIDT D P. Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41-44): 2797-2804. doi: 10.1016/j.cma.2011.04.025
    [5]
    BOER A D, ZUIJLEN A, BIJL H. Review of coupling methods for non-matching meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1515-1525. doi: 10.1016/j.cma.2006.03.017
    [6]
    李海涛, 邵泽东. 空间插值分析算法综述[J]. 计算机系统应用, 2019, 28(7): 1-8. doi: 10.15888/j.cnki.csa.006988

    LI H T, SHAO Z D. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications, 2019, 28(7): 1-8(in Chinese). doi: 10.15888/j.cnki.csa.006988
    [7]
    罗阳, 刘元海, 郑彤, 等. 重污染天气下大气污染排放源强的快速估算方法[J]. 哈尔滨工业大学学报, 2018, 50(8): 76-82. doi: 10.11918/j.issn.0367-6234.201705061

    LUO Y, LIU Y H, ZHENG T, et al. Method of rapid estimation of emission intensity of air pollution in heavily polluted weather[J]. Journal of Harbin Institute of Technology, 2018, 50(8): 76-82(in Chinese). doi: 10.11918/j.issn.0367-6234.201705061
    [8]
    MEI S. Geologist-controlled trends versus computer-controlled trends: Introducing a high-resolution approach to subsurface structural mapping using well-log data, trend surface analysis, and geospatial analysis[J]. Canadian Journal of Earth Sciences, 2009, 46(5): 309-329. doi: 10.1139/E09-024
    [9]
    GOTWAY C A, FERGUSON R B, HERGERT G W, et al. Comparison of kriging and inverse-distance methods for mapping soil parameters[J]. Soil Science Society of America Journal, 1996, 60(4): 1237-1247. doi: 10.2136/sssaj1996.03615995006000040040x
    [10]
    ZHANG T. Statistical analysis of environmental space-time processes[J]. Computers & Geosciences, 2008, 34(12): 1974-1975.
    [11]
    HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191. doi: 10.2514/3.44330
    [12]
    WITTEVEEN J, BIJL H. Explicit mesh deformation using inverse distance weighting interpolation: AIAA 2009-3996[R]. Reston: AIAA, 2009.
    [13]
    LIU Z N, YU X Y, JIA L F, et al. The influence of distance weight on the inverse distance weighted method for ore-grade estimation[J]. Scientific Reports, 2021, 11(1): 2689. doi: 10.1038/s41598-021-82227-y
    [14]
    JING M, WU J. Fast image interpolation using directional inverse distance weighting for real-time applications[J]. Optics Communications, 2013, 286: 111-116. doi: 10.1016/j.optcom.2012.09.011
    [15]
    李正泉, 吴尧祥. 顾及方向遮蔽性的反距离权重插值法[J]. 测绘学报, 2015, 44(1): 91-98. doi: 10.11947/j.AGCS.2015.20130349

    LI Z Q, WU Y X. Inverse distance weighted interpolation involving position shading[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 91-98(in Chinese). doi: 10.11947/j.AGCS.2015.20130349
    [16]
    THOMSON F R S J J. XXIV. On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure[J]. Philosophical Magazine, 1904, 7(39): 237-265.
    [17]
    柴国亮, 苏军伟, 王乐. 一种保持二阶精度的反距离加权空间插值算法[J]. 计算物理, 2020, 37(4): 393-402. doi: 10.19596/j.cnki.1001-246x.8074

    CHAI G L, SU J W, WANG L. An inverse distance weighting spatial lnterpolation algorithm with second order accuracy[J]. Chinese Journal of Computational Physics, 2020, 37(4): 393-402(in Chinese). doi: 10.19596/j.cnki.1001-246x.8074
    [18]
    SAFF E B, KUIJLAARS A. Distributing many points on a sphere[J]. Mathematical Intelligencer, 1997, 19(1): 5-11. doi: 10.1007/BF03024331
    [19]
    LU G Y, WONG D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008, 34(9): 1044-1055.
    [20]
    张锦明, 郭丽萍, 张小丹. 反距离加权插值算法中插值参数对DEM插值误差的影响[J]. 测绘科学技术学报, 2012, 29(1): 51-56. doi: 10.3969/j.issn.1673-6338.2012.01.013

    ZHANG J M, GUO L P, ZHANG X D. Effects of interpolation parameters in lnverse distance weighted method on DEM accuracy[J]. Journal of Geomatics Science and Technology, 2012, 29(1): 51-56(in Chinese). doi: 10.3969/j.issn.1673-6338.2012.01.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(419) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return