| Citation: | ZHANG J B,XU X B,WANG X,et al. Data processing technology of balanced dynamic characteristics based on wavelet reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1362-1371 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0441 |
Forced vibration occurs in wind tunnel experiments, thus, the data measured by balance is the aliasing of forced vibration and the aerodynamic force of a model. This affects the accuracy of force data. To address this problem, data processing technology of balanced dynamic characteristics is proposed based on wavelet reconstruction. Acceleration sensors are installed on the model, with vibration data obtained by knocking model, and natural frequency analyzed by fast Fourier transform (FFT). The filtering threshold is determined, and then the wavelet reconstruction is used for filtering. Finally, the dynamic compensation coefficient is calculated by projection equation. The aerodynamic data measured by the balances compensated by the compensation coefficient. Through the analysis of the experimental data, model forced vibration interference data can be processed by balance dynamic characteristics based on wavelet reconstruction. This study shows important application potential of the proposed technology in engineering.
| [1] |
史玉杰, 黄勇, 田正波. 小展弦比飞翼布局高速标模测力天平研制[J]. 实验流体力学, 2015, 29(5): 50-54.
SHI Y J, HUANG Y, TIAN Z B. Strain gauge balance development for force test on small aspect ratio flying wing high speed standard model[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 50-54(in Chinese).
|
| [2] |
罗华云, 赖传兴, 王月贵, 等. 喷管模型试验器六分量天平校准技术[J]. 航空动力学报, 2013, 28(1): 67-73.
LUO H Y, LAI C X, WANG Y G, et al. Six-component balance calibration technology for nozzle model testing facility[J]. Journal of Aerospace Power, 2013, 28(1): 67-73(in Chinese).
|
| [3] |
吕金洲, 张小庆, 陈光雄, 等. 基于惯性补偿的脉冲风洞测力天平瞬态研究[J]. 振动与冲击, 2018, 37(2): 216-222.
LV J Z, ZHANG X Q, CHEN G X, et al. Transient simulation for dynamic output of force measuring balance in animpulse combustion wind tunnel based on inertia compensation[J]. Journal of Vibration and Shock, 2018, 37(2): 216-222(in Chinese).
|
| [4] |
王锋, 武龙, 吴东升, 等. 脉冲风洞天平短时振荡测力数据稳态值提取的优化识别方法[J]. 振动与冲击, 2018, 37(8): 153-158.
WANG F, WU L, WU D S, et al. An optimization method of recovering steady-state value from short-time oscillatory signal of force balance for impulse tunnel[J]. Journal of Vibration and Shock, 2018, 37(8): 153-158(in Chinese).
|
| [5] |
徐科军, 杨双龙, 张进, 等. 杆式风洞应变天平动态实验、建模与补偿[J]. 仪器仪表学报, 2009, 30(10): 2123-2130.
XU K J, YANG S L, ZHANG J, et al. Dynamic experiment, modeling and compensation of bar-shaped strain gauge balance for wind tunnel[J]. Chinese Journal of Scientific Instrument, 2009, 30(10): 2123-2130(in Chinese).
|
| [6] |
郭晨曦, 郝新红, 栗苹,等. 毫米波调频引信的优化二维FFT信号处理算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(1): 220-228.
GUO C X, HAO X H, LI P, et al. Optimized two-dimensional FFT signal processing algorithm for millimeter-wave FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 220-228(in Chinese).
|
| [7] |
RENE DE JESUS R T. Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1291-1300. doi: 10.1109/TII.2016.2603968
|
| [8] |
SOBIA B, USMAN A, HAFIZ M A, et al. Closed-form BER expression for Fourier and wavelet transform-based pulse-shaped data in downlink NOMA[J]. IEEE Communications Letters, 2019, 23(4): 592-595. doi: 10.1109/LCOMM.2019.2903083
|
| [9] |
ZHOU Q G, CHEN D. Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS[J]. High Technology Letters, 2015, 21(2): 224-230.
|
| [10] |
KEYLOCK C J, SINGH K, GEORGIOU E F. The complexity of gravel bed river topography examined with gradual wavelet reconstruction[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3): 682-700. doi: 10.1002/2013JF002999
|
| [11] |
吴央, 袁运能. 基于小波包分解和FCM聚类的纹理图像分割方法[J]. 北京亚洲成人在线一二三四五六区学报, 2008, 34(5): 572-575.
WU Y, YUAN Y N. Texture image segmentation method based on wavelet packet transform and FCM clustring[J], Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5): 572-575 (in Chinese).
|
| [12] |
LIU W X, WANG Y J, LIU X, et al. Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction[J]. Journal of Central South University, 2016, 23(11): 2883-2895. doi: 10.1007/s11771-016-3352-1
|
| [13] |
LEMING Q, PARTHA S R, PHIL D A. Wavelet reconstruction of nonuniformly sampled signals[J]. IEEE Signal Processing Letters, 2009, 16(2): 73-76.
|
| [14] |
陈浩, 郭军海, 齐巍. 基于经验小波变换的目标加速度估计算法[J]. 北京亚洲成人在线一二三四五六区学报, 2015, 41(1): 154-159.
CHEN H, GUO J H, QI W. Estimation of target’s acceleration based on empirical wavelet transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 154-159(in Chinese).
|
| [15] |
JEON Y J, CHOI D C, LEE S J, et al. Defect detection for corner cracks in steel billets using a wavelet reconstruction method[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(2): 227-237. doi: 10.1364/JOSAA.31.000227
|
| [16] |
姚裕, 吴洪涛. 大膨胀比喷管试验台的六分量天平研究[J]. 南京理工大学学报, 2011, 35(4): 547-551.
YAO Y, WU H T. Six-component force balance for big expansion ratio nozzle test-bed[J]. Journal of Nanjing University of Science and Technology, 2011, 35(4): 547-551(in Chinese).
|