Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
CHEN Y,CHEN J,TAO M F. Mural inpainting progressive generative adversarial networks based on structure guided[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1247-1259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0440
Citation: CHEN Y,CHEN J,TAO M F. Mural inpainting progressive generative adversarial networks based on structure guided[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1247-1259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0440

Mural inpainting progressive generative adversarial networks based on structure guided

doi: 10.13700/j.bh.1001-5965.2021.0440
Funds:

National Natural Science Foundation of China (61963023); Ministry of Education in China Project of Humanities and Social Sciences Youth Foundation (19YJC760012); Basic Top-Notch Personnel Project of Lanzhou Jiaotong University (2022JC36); Tianyou Innovation Team of Lanzhou Jiaotong University (TY202003) 

More Information
  • Corresponding author: E-mail:edukeylab@126.com
  • Received Date: 04 Aug 2021
  • Accepted Date: 05 Nov 2021
  • Publish Date: 16 Nov 2021
  • Aiming at the problems of improper structural repair and loss of mural detail reconstruction after repairing during the process of damaged mural image inpainting, mural inpainting progressive generative adversarial networks based on structure guided is proposed. Firstly, a structure generator is designed to generate the missing structure content of the mural. Secondly, the mural generator is used to generate adversarial learning, and combined with the improved double pooling SKNet multi-scale feature extraction modular, the repaired structure image is used to guide the damaged mural to achieve progressive repair, which improves the detailed feature learning ability of the mural. Lastly, the reconstruction of the structural picture and the mural image is finished using the local discriminator and the global discriminator, which improves the overall consistency of the mural restoration result. Experiments on digital restoration of real Dunhuang murals show that the proposed method can effectively repair damaged Dunhuang murals, and the restored murals have a stronger structure and high-quality texture details than other comparison algorithms. Meanwhile, the proposed has better both subjective and objective evaluation.

     

  • loading
  • [1]
    WANG H, LI Q Q, JIA S. A global and local feature weighted method for ancient murals inpainting[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(6): 1197-1216. doi: 10.1007/s13042-019-01032-2
    [2]
    SHAO H, WANG Y X. Generative image inpainting with salient prior and relative total variation[J]. Journal of Visual Communication and Image Representation, 2021, 79: 103231. doi: 10.1016/j.jvcir.2021.103231
    [3]
    BRKIC A L, MITROVIC D, NOVAK A. On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation[J]. Journal of Advanced Research, 2020, 25: 67-76. doi: 10.1016/j.jare.2020.04.015
    [4]
    YANG X H, GUO B L, XIAO Z L, et al. Improved structure tensor for fine-grained texture inpainting[J]. Signal Processing:Image Communication, 2019, 73: 84-95. doi: 10.1016/j.image.2018.02.006
    [5]
    FAN Y. Damaged region filling by improved criminisi image inpainting algorithm for thangka[J]. Cluster Computing, 2019, 22(6): 13683-13691.
    [6]
    LI P, CHEN W G, NG M K. Compressive total variation for image reconstruction and restoration[J]. Computers and Mathematics with Applications, 2020, 80(5): 874-893. doi: 10.1016/j.camwa.2020.05.006
    [7]
    BINI A A. Image restoration via DOST and total variation regularisation[J]. IET Image Processing, 2019, 13(3): 458-468. doi: 10.1049/iet-ipr.2018.5504
    [8]
    WAN W, HUANG H Y, LIU J. Local block operators and TV regularization based image inpainting[J]. Inverse Problems & Imaging, 2018, 12(6): 1389-1410.
    [9]
    陈永, 艾亚鹏, 郭红光. 改进曲率驱动模型的敦煌壁画修复算法[J]. 计算机辅助设计与图形学学报, 2020, 32(5): 787-796.

    CHEN Y, AI Y P, GUO H G. Improved curvature-driven model of Dunhuang mural restoration algorithm[J]. Journal of Computer Aided Design and Graphics, 2020, 32(5): 787-796(in Chinese).
    [10]
    QIN J, BAI H H, ZHAO Y. Multi-scale attention network for image inpainting[J]. Computer Vision and Image Understanding, 2021, 204: 103155. doi: 10.1016/j.cviu.2020.103155
    [11]
    XIE C H, LIU S H, LI C, et al. Image inpainting with learnable bidirectional attention maps[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8858-8867.
    [12]
    DU W C, CHEN H, YANG H. Learning invariant representation for unsupervised image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11224-11233.
    [13]
    DEMIR U, UNAL G. Patch-based image inpainting with generative adversarial networks[EB/OL]. (2018-03-20)[2021-08-01].
    [14]
    FANG Y C, LI Y F, TU X K, et al. Face completion with hybrid dilated convolution[J]. Signal Processing:Image Communication, 2020, 80: 115664. doi: 10.1016/j.image.2019.115664
    [15]
    HE X, YIN Y. Non-local and multi-scale mechanisms for image inpainting[J]. Sensors, 2021, 21(9): 3281. doi: 10.3390/s21093281
    [16]
    SHI Y, FAN Y, ZHANG N. A generative image inpainting network based on the attention transfer network across layer mechanism[J]. Optik, 2021, 242: 167101. doi: 10.1016/j.ijleo.2021.167101
    [17]
    胡凯, 赵健, 刘昱, 等. 结构引导的图像修复[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(7): 1269-1277. doi: 10.13700/j.bh.1001-5965.2021.0004

    HU K, ZHAO J, LIU Y, et al. Structure-guided image restoration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1269-1277(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0004
    [18]
    李清泉, 王欢, 邹勤. 一种基于稀疏表示模型的壁画修复算法[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1847-1853.

    LI Q Q, WANG H, ZOU Q. A mural restoration algorithm based on sparse representation model[J]. Journal of Wuhan University (Information Science Edition), 2018, 43(12): 1847-1853(in Chinese).
    [19]
    REN Y R, YU X M, ZHANG R N, et al. StructureFlow: Image inpainting via structure-aware appearance flow[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 181-190.
    [20]
    LIU H Y, JIANG B, SONG Y B, et al. Rethinking image inpainting via a mutual encoder-decoder with feature equalizations[C]//Computer Vision-ECCV 2020. Berlin: Springer, 2020, 12347: 725-741.
    [21]
    LI X, WANG W H, HU X L, et al . Selective kernel networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 510-519.
    [22]
    HOU Q B, ZHANG L, CHENG M M, et al. Strip pooling: Rethinking spatial pooling for scene parsing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 4002- 4011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(891) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return