| Citation: | XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0439 |
Due to the flexibility of modern aircraft wing, geometric nonlinearity cannot be neglected. Based on dynamic response data samples, non-linear stiffness coefficients in structural dynamics equation are identified based on harmonic balance and fast Fourier transform, and a non-linear structural order reduction model is established. The basic mode of displacement residue is introduced to recover the displacement of large flexible wings. A geometrically nonlinear aeroelastic analysis framework for large flexible wings is established by combining non-planar vortex lattice method and non-planar spline interpolation method. Compared with reduced order model for the traditional geometric nonlinear structure based on static data regression analysis, the proposed method requires a small number of load sets and improves analysis efficiency. Results show that compared with the nonlinear finite element method, the proposed model has high accuracy and can be effectively applied to the geometric nonlinear static aeroelastic analysis of large flexible wings. The result of traditional linear calculation method is significantly different from that of the nonlinear method.
| [1] |
谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京亚洲成人在线一二三四五六区学报, 2003, 29(12): 1087-1090. doi: 10.13700/j.bh.1001-5965.2003.12.007
XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1087-1090(in Chinese). doi: 10.13700/j.bh.1001-5965.2003.12.007
|
| [2] |
HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA-TN-D-7818[R]. Washington, D. C. : NASA, 1974.
|
| [3] |
HODGES D H. Review of composite rotor blade modeling[J]. AIAA Journal, 1990, 28(3): 561-565. doi: 10.2514/3.10430
|
| [4] |
SIMO J C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70. doi: 10.1016/0045-7825(85)90050-7
|
| [5] |
CASTELLANI M, COOPER J E, LEMMENS Y. Nonlinear static aeroelasticity of high aspect ratio wing aircraft by FEM and multibody methods[C]//15th Dynamics Specialists Conference. Reston: AIAA, 2016.
|
| [6] |
MIGNOLET M P, PRZEKOP A, RIZZI S A, et al. A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[J]. Journal of Sound and Vibration, 2013, 332(10): 2437-2460. doi: 10.1016/j.jsv.2012.10.017
|
| [7] |
MCEWAN M I, WRIGHT J R, COOPER J E, et al. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation[J]. Journal of Sound and Vibration, 2001, 243(4): 601-624. doi: 10.1006/jsvi.2000.3434
|
| [8] |
MIGNOLET M P, SOIZE C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3951-3963. doi: 10.1016/j.cma.2008.03.032
|
| [9] |
HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1145-1163. doi: 10.1016/j.jsv.2004.08.036
|
| [10] |
HOLLKAMP J J, GORDON R W. Reduced-order models for nonlinear response prediction: Implicit condensation and expansion[J]. Journal of Sound and Vibration, 2008, 318(4-5): 1139-1153. doi: 10.1016/j.jsv.2008.04.035
|
| [11] |
GUO X, PRZEKOP A. Energy-based modal basis selection procedures for reduced-order nonlinear simulation[C]//Proceeding of the 51st Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2010.
|
| [12] |
HARMIN M Y, COOPER J E. Aeroelastic behavior of a wing including geometric nonlinearities[J]. The Aeronautical Journal, 2011, 115(1174): 767-777. doi: 10.1017/S0001924000006515
|
| [13] |
XIE C C, AN C, LIU Y, et al. Static aeroelastic analysis including geometric nonlinearities based on reduced order model[J]. Chinese Journal of Aeronautics, 2017, 30(2): 638-650. doi: 10.1016/j.cja.2016.12.031
|
| [14] |
AN C, YANG C, XIE C C, et al. Gust load alleviation including geometric nonlinearities based on dynamic linearization of structural ROM[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-20.
|
| [15] |
MEDEIROS R R, CESNIK C E S, COETZEE E B. Computational aeroelasticity using modal-based structural nonlinear analysis[J]. AIAA Journal, 2020, 58(1): 362-371. doi: 10.2514/1.J058593
|
| [16] |
张骥. 一种基于FFT计算离散小波变换的方法[J]. 计算机与数字工程, 2009, 37(10): 29-31. doi: 10.3969/j.issn.1672-9722.2009.10.009
ZHANG J. Discrete wavelet transform algorithm-based on fast Fourier transform algorithm[J]. Computer & Digital Engineering, 2009, 37(10): 29-31(in Chinese). doi: 10.3969/j.issn.1672-9722.2009.10.009
|
| [17] |
窦苏广, 叶敏. 基于谐波平衡的参激系统非线性参数识别频域法[J]. 振动与冲击, 2009, 28(12): 123-127. doi: 10.3969/j.issn.1000-3835.2009.12.030
DOU S G, YE M. Nonlinear identification in frequency domain for parametric excitation system based on harmonic balance principle[J]. Journal of Vibration and Shock, 2009, 28(12): 123-127(in Chinese). doi: 10.3969/j.issn.1000-3835.2009.12.030
|
| [18] |
IBRAHIM S R. An approach for reducing computational requirements in modal identification[J]. AIAA Journal, 1986, 24(10): 1725-1727. doi: 10.2514/3.9516
|
| [19] |
殷有泉. 非线性有限元基础[M]. 北京: 北京大学出版社, 2007: 272-273.
YIN Y Q. Nonlinear finite element foundation[M]. Beijing: Peking University Press, 2007: 272-273(in Chinese).
|
| [20] |
安朝. 大柔性飞行器大柔性飞行器结构建模方法及气动弹性分析研究[D]. 北京: 北京亚洲成人在线一二三四五六区, 2020.
AN C. Structure modeling methodology and aeroelastic analysis of large flexible aircraft[D]. Beijing: Beihang University, 2020(in Chinese).
|
| [21] |
刘燚. 大柔性飞机气动弹性稳定性及动响应分析[D]. 北京: 北京亚洲成人在线一二三四五六区, 2016.
LIU Y. Aeroelastic stability and dynamic response analysis of large flexible aircraft [D]. Beijing: Beihang University, 2016 (in Chinese).
|
| [22] |
刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.
LIU Y, YANG L, XIE C C. Study on the static aeroelasticity for flexible aircrat based on non-planar vortex lattice method[J]. Engineering Mechanics, 2018, 35(2): 249-256(in Chinese).
|
| [23] |
XIE C C, YANG C. Surface splines generalization and large deflection interpolation[J]. Journal of Aircraft, 2007, 44(3): 1024-1026. doi: 10.2514/1.24571
|