Volume 49 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
YUAN H,LUO Y,CHEN Y J,et al. Two-dimensional imaging algorithm for arcsine-based circular antenna array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1487-1494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0437
Citation: YUAN H,LUO Y,CHEN Y J,et al. Two-dimensional imaging algorithm for arcsine-based circular antenna array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1487-1494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0437

Two-dimensional imaging algorithm for arcsine-based circular antenna array

doi: 10.13700/j.bh.1001-5965.2021.0437
Funds:

National Natural Science Foundation of China (61971434, 61801516) 

More Information
  • Corresponding author: E-mail:luoying2002521@163.com
  • Received Date: 02 Aug 2021
  • Accepted Date: 30 Sep 2021
  • Publish Date: 27 Oct 2021
  • Radar imaging technology can capture rich feature information of a target, which provides important basis for target recognition. Vortex electromagnetic wave imaging technology, a widely discussed topic, can capture high-resolution two-dimensional images of relatively stationary targets. To achieve a higher imaging quality, the azimuth resolution in radar beams is obtained using arcsine-based circular antenna array, and a two-dimensional imaging algorithm based on the arcuate ring antenna array is proposed. With only half a circular antenna array, the azimuth resolution similar to that of vortex electromagnetic wave imaging technology can be obtained, and the sidelobe height is reduced. Firstly, the one-dimensional range profile is obtained through the “Dechirp” operation. On this basis, the reference signal is constructed, the cosine function in the phase is changed into a linear function through the conjugate multiplication between the echo and the reference signal. Finally, the echo is accumulated to obtain the two-dimensional image of the target. The effects of the number of array elements and beam width on the azimuth resolution are analyzed. The effectiveness of the proposed method is verified compared with that of vortex electromagnetic wave radar imaging method.

     

  • loading
  • [1]
    CHEN C H, ZHANG Q, GU F F, et al. High-speed target inverse synthetic aperture radar imaging via parametric sparse representation[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035011.
    [2]
    CHEN Y J, ZHANG Q, LOU Y, et al. Multi-target radar imaging based on phased-MIMO technique—Part Ⅱ: Adaptive resource allocation[J]. IEEE Sensors Journal, 2017, 17(19): 6198-6209. doi: 10.1109/JSEN.2017.2740038
    [3]
    HU C Y, WANG L, LI Z, et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1203-1207. doi: 10.1109/LGRS.2019.2943069
    [4]
    李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(1): 159-168.

    LI G S, SU J, LI Y H. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168(in Chinese).
    [5]
    OZ Y, ALP Y K, YAZGAN-ERER I. ISAR imaging under group sparsity constraints using ADMM[C]//2020 28th Signal Processing and Communications Applications Conference (SIU). Piscataway: IEEE Press, 2021: 1-4.
    [6]
    RONG J J, WANG Y, HAN T. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8681-8693. doi: 10.1109/JSEN.2019.2923447
    [7]
    ZHAO H P, WANG J L, GAO M G. Three-dimensional ISAR imaging for space target via multi-pass orbit observation[C]//International Conference on Radar Systems (Radar 2017). London: IET Press, 2017: 1-5.
    [8]
    RAJ R G, RODENBECK C T, BEUN J B, et al. 3D ISAR imaging algorithm based on amplitude monopulse processing at W band[C]//2019 IEEE International Symposium on Phased Array System & Technology (PAST). Piscataway: IEEE Press, 2020: 1-6.
    [9]
    史林, 韩宁, 宋祥君, 等. 基于虚拟慢时间的双基地ISAR成像算法[J]. 航空学报, 2019, 40(5): 322683.

    SHI L, HAN N, SONG X J, et al. Bistatic ISAR imaging algorithm based on virtual slow time[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 322683(in Chinese).
    [10]
    XING M D, WU R B, LAN J Q, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141-144. doi: 10.1109/LGRS.2004.824766
    [11]
    王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10151: 680-690.

    WANG J Q, LIU K, WANG Y, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10151: 680-690 (in Chinese).
    [12]
    ZHAO H, WANG K Z. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]//2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). Piscataway: IEEE Press, 2021: 446-450.
    [13]
    LIU K, CHENG Y Q, GAO Y, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [14]
    LIU H Y, LIU K, CHENG Y Q, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806-815. doi: 10.1109/JSEN.2019.2943698
    [15]
    LUO Y, CHEN Y J, ZHU Y Z, et al. Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar[J]. IET Radar Sonar & Navigation, 2020, 14(1): 2-9.
    [16]
    LIU K, JIANG Y W, CHENG Y Q, et al. Electromagnetic vortex imaging based on distributed OAM radiation sources[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Piscataway: IEEE Press, 2018: 1-3.
    [17]
    WANG J Q, LIU K, CHENG Y Q, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338-1345. doi: 10.1109/JSEN.2018.2879814
    [18]
    LIU K, CHENG Y Q, LI X, et al. Passive OAM-based radar imaging with single-in-multiple-out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840-842. doi: 10.1109/LMWC.2018.2852146
    [19]
    TANG B, GUO K Y, WANG J, et al. Resolution performance of the orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975-2978. doi: 10.1109/LAWP.2017.2756094
    [20]
    安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221-242. doi: 10.12000/JR20026

    AN D X, CHEN L P, FENG D, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221-242(in Chinese). doi: 10.12000/JR20026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(422) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return