| Citation: | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0424 |
The cavity flow, especially at high Mach numbers (
| [1] |
LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. doi: 10.1016/j.paerosci.2010.11.002
|
| [2] |
ROSSITER J E. Wind-tunnel experimental on the flow over rectangular cavities at subsonic and transonic speeds: RAE Technical Report No. 64037[R]. London: REA, 1964.
|
| [3] |
SUHS N E. Computational of three-dimensional cavity flow at subsonic and supersonic Mach numbers: AIAA-87-1208[R]. Reston: AIAA, 1987: 1-9.
|
| [4] |
STALLINGS R L J, WILCOX F J J. Experimental cavity pressure distributions at supersonic speeds: NASA TP-2683[R]. Washington, D. C. : NASA, 1987: 1-75.
|
| [5] |
LARCHEVÊQUE L, SAGAUT P, LÊ T H, et al. Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number[J]. Journal of Fluid Mechanics, 2004, 516: 265-301. doi: 10.1017/S0022112004000709
|
| [6] |
马明生, 张培红, 邓有奇, 等. 超声速空腔流动数值模拟研究[J]. 空气动力学学报, 2008, 26(3): 388-393. doi: 10.3969/j.issn.0258-1825.2008.03.021
MA M S, ZHANG P H, DENG Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3): 388-393(in Chinese). doi: 10.3969/j.issn.0258-1825.2008.03.021
|
| [7] |
黎军, 张群峰, 曾宏刚, 等. 腔体闭式流动控制的实验和数值模拟[J]. 北京亚洲成人在线一二三四五六区学报, 2008, 34(1): 96-99. doi: 10.13700/j.bh.1001-5965.2008.01.013
LI J, ZHANG Q F, ZENG H G, et al. Experimental and numerical investigation of controls for closed cavity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1): 96-99(in Chinese). doi: 10.13700/j.bh.1001-5965.2008.01.013
|
| [8] |
吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71-75. doi: 10.3969/j.issn.1672-9897.2008.01.015
WU J F, LUO X F, FAN Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and supersonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71-75(in Chinese). doi: 10.3969/j.issn.1672-9897.2008.01.015
|
| [9] |
吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012: 1-178.
WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012: 1-178 (in Chinese) .
|
| [10] |
谢露, 张彦军, 侯银珠, 等. 亚声速武器舱空腔流动压力特性及其控制方法[J]. 航空学报, 2020, 41(11): 123961.
XIE L, ZHANG Y J, HOU Y Z, et al. Cavity flow pressure characteristics and flow control methods of subsonic weapon bay[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123961(in Chinese).
|
| [11] |
SHEPHARD M. Automatic and adaptive mesh generation[J]. IEEE Transactions on Magnetics, 1985, 21(6): 2484-2489. doi: 10.1109/TMAG.1985.1064241
|
| [12] |
张培红, 赵炜, 张耀冰, 等. CFD在飞翼标模支撑干扰影响研究中的应用[J]. 计算力学学报, 2020, 37(6): 743-749. doi: 10.7511/jslx20191112002
ZHANG P H, ZHAO W, ZHANG Y B, et al. Application of CFD in the investigation on support interference of flying-wing calibration model[J]. Chinese Journal of Computational Mechanics, 2020, 37(6): 743-749(in Chinese). doi: 10.7511/jslx20191112002
|
| [13] |
NAKAHASHI K, DEIWERT G S. Three-dimensional adaptive grid method[J]. AIAA Journal, 1986, 24(6): 948-954. doi: 10.2514/3.9369
|
| [14] |
BAI W, QIU Z, LI L. Recent efforts to establish adaptive hybrid grid computing capability at ACTRI[J]. Computational Fluid Dynamics Journal, 2007, 7(4): 438-449.
|
| [15] |
唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10): 122894. doi: 10.7527/S1000-6893.2019.22894
TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122894(in Chinese). doi: 10.7527/S1000-6893.2019.22894
|
| [16] |
陈宣友, 董海涛, 李椿萱, 等. 3点逐步r型自适应网格算法[J]. 北京亚洲成人在线一二三四五六区学报, 2006, 32(1): 13-17. doi: 10.3969/j.issn.1001-5965.2006.01.004
CHEN X Y, DONG H T, LI C X, et al. Three-point step-by-step generating r-type adaptive grid technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1): 13-17(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.01.004
|
| [17] |
LENTINI M, PEREYRA V. An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers[J]. SIAM Journal on Numerical Analysis, 1977, 14(1): 91-111. doi: 10.1137/0714006
|
| [18] |
BERGER M J, OLIGER J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. Journal of Computational Physics, 1984, 53(3): 484-512. doi: 10.1016/0021-9991(84)90073-1
|
| [19] |
BECKER R, RANNACHER R. An optimal control approach to a posteriori error estimation in finite element methods[J]. Acta Numerica, 2001, 10: 1-102. doi: 10.1017/S0962492901000010
|
| [20] |
GILES M B, PIERCE N A. Adjoint error correction for integral outputs[M]. Berlin: Springer, 2002: 47-96.
|
| [21] |
BARTH T. Numerical methods and error estimation for conservation laws on structured and unstructured meshes: Von Karman Institute Lecture Series 04-2003[R]. Brussels: Von Karman Institute, 2003: 1-65.
|
| [22] |
VENDITTI D A, DARMOFAL D L. Grid adaptation for functional outputs: Application to two-dimensional inviscid flows[J]. Journal of Computational Physics, 2002, 176(1): 40-69. doi: 10.1006/jcph.2001.6967
|
| [23] |
BALASUBRAMANIAN R, NEWMAN J C. Comparison of adjoint-based and feature-based grid adaptation for functional outputs[J]. International Journal for Numerical Methods in Fluids, 2007, 53(10): 1541-1569. doi: 10.1002/fld.1361
|