| Citation: | XU Na, ZHOU Shuaizhi, MOU Xiaoleiet al. Effects of stroke deviation on flight stability of true hoverfly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1372-1378. doi: 10.13700/j.bh.1001-5965.2020.0719(in Chinese) |
The aerodynamic performance of insect can be affected by wing stroke deviation, which may also influence the flight stability. The longitudinal and lateral non-dimensional stability derivatives of hoverfly with stroke deviation are obtained by solving Navier-Stokes equation, and then the natural modes of motion analysis method is used to analyze the flight stability. The results show that, when stroke deviation exists, the stability derivative of the rolling moment induced by the side motion velocity decreases significantly, while the other derivatives have little difference by comparing the situation with no stroke deviation. The reason why the existence of stroke deviation causes the decrease of the derivative is that the positive rolling moment of the left and right wings declines obviously under lateral wind circumstance, while the negative rolling moment caused by the lateral force increases slightly, which makes the total negative rolling moment increase. However, the decrease of the derivative of the rolling moment caused by the lateral flow does not alter the flight stability of hoverfly, and the longitudinal and lateral characteristic modes of motion are still the same as those without stroke deviation.
| [1] |
ELLINGTON C. The aerodynamics of hovering insect flight. III. Kinematics[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984, 305(1122): 41-78.
|
| [2] |
LIU Y, SUN M. Wing kinematics measurement and aerodynamics of hovering droneflies[J]. Journal of Experimental Biology, 2008, 211(13): 2014-2025. doi: 10.1242/jeb.016931
|
| [3] |
MOU X L, LIU Y P, SUN M. Wing motion measurement and aerodynamics of hovering true hoverflies[J]. Journal of Experimental Biology, 2011, 214(17): 2832-2844. doi: 10.1242/jeb.054874
|
| [4] |
ENNOS A R. The kinematics and aerodynamics of the free flight of some diptera[J]. Journal of Experimental Biology, 1989, 142(1): 49-85. doi: 10.1242/jeb.142.1.49
|
| [5] |
WILLMOTT A P, ELLINGTON C P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight[J]. Journal of Experimental Biology, 1997, 200(21): 2705-2722. doi: 10.1242/jeb.200.21.2705
|
| [6] |
FRY S N, SAYAMAN R, DICKINSON M H. The aerodynamics of free-flight maneuvers in Drosophila[J]. Science, 2003, 300(5618): 495-498. doi: 10.1126/science.1081944
|
| [7] |
FRY S N, SAYAMAN R, DICKINSON M H. The aerodynamics of hovering flight in Drosophila[J]. Journal of Experimental Biology, 2005, 208(12): 2303-2318. doi: 10.1242/jeb.01612
|
| [8] |
WANG C, ZHOU C Y, XIE P. Numerical investigation into the effects of stroke trajectory on the aerodynamic performance of insect hovering flight[J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1659-1669. doi: 10.1007/s12206-016-0322-3
|
| [9] |
LUO G Y, DU G, SUN M. Effects of stroke deviation on aerodynamic force production of a flapping wing[J]. AIAA Journal, 2018, 56(1): 25-35. doi: 10.2514/1.J055739
|
| [10] |
HU F J, LIU X M. Effects of stroke deviation on hovering aerodynamic performance of flapping wings[J]. Physics of Fluids, 2019, 31(11): 111901. doi: 10.1063/1.5124916
|
| [11] |
LEI M L, LI C Y. The aerodynamic performance of passive wing pitch in hovering flight[J]. Physics of Fluids, 2020, 32(5): 051902. doi: 10.1063/5.0006902
|
| [12] |
牟晓蕾, 许娜. 翅尖轨迹对食蚜蝇悬停时气动特性的影响[J]. 北京亚洲成人在线一二三四五六区学报, 2016, 42(12): 2603-2609. doi: 10.13700/j.bh.1001-5965.2015.0843
MOU X L, XU N. Effect of wing-tip trajectory on aerodynamics of hovering true hoverfly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2603-2609(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0843
|
| [13] |
JANKAUSKI M, DANIEL T L, SHEN I Y. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects[J]. Bioinspiration & Biomimetics, 2017, 12(4): 046001.
|
| [14] |
SUN M, XIONG Y. Dynamic flight stability of a hovering bumblebee[J]. Journal of Experimental Biology, 2005, 208(3): 447-59. doi: 10.1242/jeb.01407
|
| [15] |
SUN M, WANG J K, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246. doi: 10.1007/s10409-007-0068-3
|
| [16] |
ZHANG Y, SUN M. Dynamic flight stability of a hovering model insect: Lateral motion[J]. Acta Mechanica Sinica, 2010, 26(2): 175-190. doi: 10.1007/s10409-009-0303-1
|
| [17] |
MOU X L, SUN M. Dynamic flight stability of a model hoverfly in inclined-stroke-plane hovering[J]. Journal of Bionic Engineering, 2012, 9(3): 294-303. doi: 10.1016/S1672-6529(11)60123-6
|
| [18] |
XU N, SUN M. Lateral dynamic flight stability of a model bumblebee in hovering and forward flight[J]. Journal of Theoretical Biology, 2013, 319: 102-115. doi: 10.1016/j.jtbi.2012.11.033
|
| [19] |
XU N, SUN M. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering[J]. Bioinspiration & Biomimetics, 2014, 9(3): 036019.
|
| [20] |
ETKIN B, REID L D. Dynamics of flight: Stability and control[M]. New York: John Wiley and Sons, Inc, 1996.
|
| [21] |
TAYLOR G K, THOMAS A L R. Animal flight dynamics. II. Longitudinal stability in flapping flight[J]. Journal of Theoretical Biology, 2002, 214(3): 351-370. doi: 10.1006/jtbi.2001.2470
|
| [22] |
ROGERS S E, KWAK D, KIRIS C. Numerical solution of the incompressible Navier-Stokes equations for steady-state and time-dependent problems[C]//27th Aerospace Sciences Meeting, 1989: 0463.
|
| [23] |
SUN M, TANG J. Lift and power requirements of hovering flight in Drosophila virilis[J]. Journal of Experimental Biology, 2002, 205(16): 2413-2427. doi: 10.1242/jeb.205.16.2413
|
| [24] |
ZHU H J, MENG X G, SUN M. Forward flight stability in a drone-fly[J]. Scientific Reports, 2020, 10(1): 12. doi: 10.1038/s41598-019-55410-5
|
| [25] |
CHENG B, DENG X. Translational and rotational damping of flapping flight and its dynamics and stability at hovering[J]. IEEE Transactions on Robotics, 2011, 27(5): 849-864.
|