Volume 48 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
HUANG Chenwei, CHENG Jingchun, PAN Xiong, et al. Pixel-wise visible image registration based on deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 522-532. doi: 10.13700/j.bh.1001-5965.2020.0611(in Chinese)
Citation: HUANG Chenwei, CHENG Jingchun, PAN Xiong, et al. Pixel-wise visible image registration based on deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 522-532. doi: 10.13700/j.bh.1001-5965.2020.0611(in Chinese)

Pixel-wise visible image registration based on deep neural network

doi: 10.13700/j.bh.1001-5965.2020.0611
More Information
  • Corresponding author: CHENG Jingchun, E-mail: chengjingchun14@163.com
  • Received Date: 03 Nov 2020
  • Accepted Date: 16 Jan 2021
  • Publish Date: 20 Mar 2022
  • Current image registration algorithms relying on the internal parameters of sensing devices for image alignment face the difficulty of acquiring precise device parameters and reaching high mapping precision; while the ones using matched image features to calculate image homography matric for registration have the problem of insufficient utilization of scene depth information. Based on this observation, we propose a method which can generate more authentic image registration data from monocular images and their depth-maps, and use the data to train a pixel-wise image registration network, the PIR-Net, for fast, accurate and practical image registration. We construct a large-scale, multi-view, realistic image registration database with pixel-wise depth information that imitates real-world situations, the multi-view image registration (MVR) dataset. The MVR dataset contains 7 240 pairs of RGB images and their corresponding registraton labels. With the dataset, we train an encoder-decoder structure based, fully convolutional image registration network, the PIR-Net, extensive experiments on the MVR dataset demonstrate that the PIR-Net can predict pixel-wise image alignment matrix for multi-view RGB images without accessing the camera internal parameters, and that the PIR-Net out-performs traditional image registration methods. On the MVR dataset, the registration error of PIR-Net is only 18% of the general feature matching method (SIFT+RANSAC), and its time cost is 30% less.

     

  • loading
  • [1]
    BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788-1800. doi: 10.1109/TMI.2019.2897538
    [2]
    FAN J, CAO X, YAP P T, et al. BIRNet: Brain image registration using dual-supervised fully convolutional networks[J]. Medical Image Analysis, 2019, 54: 193-206. doi: 10.1016/j.media.2019.03.006
    [3]
    BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. An unsupervised learning model for deformable medical image registration[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2018: 9252-9260.
    [4]
    CHENG X, ZHANG L, ZHENG Y. Deep similarity learning for multimodal medical images[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2018, 6(3): 248-252.
    [5]
    梁怀丹. 空间遥感红外与可见光图像快速配准算法研究[D]. 长春: 中国科学院大学, 2019: 18-25.

    LIANG H D. Research on fast registration of spatial remote sensing infrared and visible light images[D]. Changchun: Chinese Academy of Sciences, 2019: 18-25(in Chinese).
    [6]
    MA J, JIANG J, ZHOU H, et al. Guided locality preserving feature matching for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4435-4447. doi: 10.1109/TGRS.2018.2820040
    [7]
    XIANG Y, WANG F, YOU H. OS-SIFT: A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3078-3090. doi: 10.1109/TGRS.2018.2790483
    [8]
    WANG J, SUENAGA H, HOSHI K, et al. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4): 1295-1304. doi: 10.1109/TBME.2014.2301191
    [9]
    ARSLAN S, YAZICI A, SACAN A, et al. Comparison of feature-based and image registration-based retrieval of image data using multidimensional data access methods[J]. Data & Knowledge Engineering, 2013, 86: 124-145.
    [10]
    WOLF Y A, GOREN G, VITITZRABIN E, et al. Method and device for stereoscopic vision: US10567732B2[P]. 2020-02-18.
    [11]
    BELLO G A, DAWES T J W, DUAN J, et al. Deep-learning cardiac motion analysis for human survival prediction[J]. Nature Machine Intelligence, 2019, 1(2): 95-104. doi: 10.1038/s42256-019-0019-2
    [12]
    BENHIMANEB S, MALIS E. Homography-based 2D visual tracking and servoing[J]. The International Journal of Robotics Research, 2007, 26(7): 661-676. doi: 10.1177/0278364907080252
    [13]
    LI J, WANG Z, LAI S, et al. Parallax-tolerant image stitching based on robust elastic warping[J]. IEEE Transactions on Multimedia, 2017, 20(7): 1672-1687.
    [14]
    HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1037-1045.
    [15]
    NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//IEEE International Symposium on Mixed & Augmented Reality. Piscataway: IEEE Press, 2011: 127-136.
    [16]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [17]
    WANG B, WU D, LU Q, et al. A new image registration method for infrared images and visible images[C]//2010 3rd International Congress on Image and Signal Processing. Piscataway: IEEE Press, 2010, 4: 1745-1749.
    [18]
    贾雯晓, 张贵仓, 汪亮亮, 等. 基于SIFT和改进的RANSAC图像配准算法[J]. 计算机工程与应用, 2018, 54(2): 203-207.

    JIA W X, ZHANG G C, WANG L L, et al. Image registration algorithm based on SIFT and improved RANSAC[J]. Computer Engineering and Applications, 2018, 54(2): 203-207(in Chinese).
    [19]
    许佳佳. 结合Harris与SIFT算子的图像快速配准算法[J]. 中国光学, 2015, 8(4): 62-69.

    XU J J. Fast image registration method based on Harris and SIFT algorithm[J]. Chinese Optics, 2015, 8(4): 62-69(in Chinese).
    [20]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 770-778.
    [21]
    XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 1492-1500.
    [22]
    SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 5693-5703.
    [23]
    DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1734-1747. doi: 10.1109/TPAMI.2015.2496141
    [24]
    YANG Z, DAN T, YANG Y. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018, 6: 38544-38555. doi: 10.1109/ACCESS.2018.2853100
    [25]
    DETONE D, MALISIEWICZ T, RABINOVICH A. Deep image homography estimation[EB/OL]. (2016-06-13)[2020-11-01].
    [26]
    NGUYEN T, CHEN S W, SHIVAKUMAR S S, et al. Unsupervised deep homography: A fast and robust homography estimation model[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2346-2353. doi: 10.1109/LRA.2018.2809549
    [27]
    ZHANG J, WANG C, LIU S, et al. Content-aware unsupervised deep homography estimation[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2020: 653-669.
    [28]
    YE N, WANG C, LIU S, et al. DeepMeshFlow: Content adaptive mesh deformation for robust image registration[EB/OL]. (2019-12-11)[2020-11-01].
    [29]
    ZHAO C, CAO Z, LI C, et al. NM-Net: Mining reliable neighbors for robust feature correspondences[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 215-224.
    [30]
    ZEINIK L, IRANI M. Multiview constraints on homographies[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 214-223. doi: 10.1109/34.982901
    [31]
    DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks[C]//IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2015: 2758-2766.
    [32]
    SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2012: 746-760.
    [33]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2014: 740-755.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(1069) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return