Volume 47 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
MAO Sen, YANG Chao, XIE Changchuan, et al. Comparative analysis of linear/nonlinear static aeroelasticity of fishbone flexible wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1299-1310. doi: 10.13700/j.bh.1001-5965.2020.0307(in Chinese)
Citation: MAO Sen, YANG Chao, XIE Changchuan, et al. Comparative analysis of linear/nonlinear static aeroelasticity of fishbone flexible wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1299-1310. doi: 10.13700/j.bh.1001-5965.2020.0307(in Chinese)

Comparative analysis of linear/nonlinear static aeroelasticity of fishbone flexible wing

doi: 10.13700/j.bh.1001-5965.2020.0307
More Information
  • Corresponding author: XIE Changchuan, E-mail: xiechangc@cqjj8.com
  • Received Date: 01 Jul 2020
  • Accepted Date: 10 Jul 2020
  • Publish Date: 20 Jun 2021
  • Fishbone flexible wing is a excellent design of active morphing camber wing. Ithas low chordwise bending stiffness and high stiffness along the thickness direction of airfoil, and it has strong geometric nonlinearity and significant aeroelastic effect when undergoing active deformation with large deformation. The traditional linear static aeroelastic analysis method is not fit for this problem. Therefore, this paper takes the public fishbone flexible wing model of Bristol University as the research object, adopts the nonlinear aeroelastic analysis method which is based on non-planar Vortex Lattice Method (VLM) and nonlinear finite element analysis and the traditional linear aeroelastic analysis method which is based on linear finite element analysis and planar VLM to analyze the static aeroelasticity of the fishbone wing under large deformation and compare the results. Similarly, the aerodynamic calculation results of the non-planar VLM and XFOIL software used in this paper are verified. The results show that the aeroelastic effect of the fishbone flexible wing under large deformation is significant. Compared to the results of traditional linear static aeroelasticity analysis method, the lift coefficient of fishbone wing under large deformation by nonlinear static aeroelasticity analysis method is 8.28% smaller at most, and the moment coefficient is 6.86% smaller at most. The real deformation under the aerodynamic load can be obtained accurately and quickly by the nonlinear aeroelasticity analysis method proposed in this paper, which is more valuable for practical engineering application.

     

  • loading
  • [1]
    RAYMER D. Aircraft design: A conceptual approach[M]. Reston: AIAA, 2018.
    [2]
    WOODS B K, FRISWELL M I. Preliminary investigation of a fishbone active camber concept[C]//Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2012: 1-8.
    [3]
    BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [4]
    WOODS B K, FINCHAM J H, FRISWELL M I. Aerodynamic modelling of the fish bone active camber morphing concept[C]//Proceedings of the RAeS Applied Aerodynamics Conference, 2014: 737-748.
    [5]
    WOODS B K, FRISWELL M I. Structural characterization of the fish bone active camber morphing airfoil: AIAA 2014-1122[R]. Reston: AIAA, 2014.
    [6]
    RIVERO A E, WEAVER P M, COOPER J E, et al. Progress on the design, analysis and experimental testing of a composite fish bone active camber morphing wing[C]//ICAST 2017: 28th International Conference on Adaptive StructUres and Technologies, 2017: 1-11.
    [7]
    WOODS B K, FRISWELL M I. Fluid-structure interaction analysis of the fish bone active camber mechanism: AIAA 2013-1908[R]. Reston: AIAA, 2013.
    [8]
    WOODS B K, FRISWELL M I. Multi-objective geometry optimization of the fish bone active camber morphing airfoil[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(6): 808-819. doi: 10.1177/1045389X15604231
    [9]
    DRELA M. Integrated simulation model for preliminary aerodynamic, structural, and control-law design of aircraft: AIAA 99-1394[R]. Reston: AIAA, 1999.
    [10]
    MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55: 46-72.
    [11]
    DANG H X, YANG Z, LI Y. Accelerated loosely-coupled CFD/CSD method for nonlinear static aeroelasticity analysis[J]. Aerospace Science and Technology, 2010, 14(4): 250-258. doi: 10.1016/j.ast.2010.01.004
    [12]
    WERTER N P M, DE BREUKER R, ABDALLA M M. Continuous-time state-space unsteady aerodynamic modeling for efficient loads analysis[J]. AIAA Journal, 2017, 56(3): 905-916. doi: 10.2514/1.J056068
    [13]
    XIE C C, WANG L B, YANG C, et al. Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method[J]. Chinese Journal of Aeronautics, 2013, 26(3): 514-521. doi: 10.1016/j.cja.2013.04.048
    [14]
    谢长川, 胡锐, 王斐, 等. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11): 249-256. doi: 10.6052/j.issn.1000-4750.2015.04.0254

    XIE C C, HU R, WANG F, et al. Aeroelastic wind tunnel test model design and experiment on very flexible high-aspect-ratio wings[J]. Engineering Mechanics, 2016, 33(11): 249-256(in Chinese). doi: 10.6052/j.issn.1000-4750.2015.04.0254
    [15]
    刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.

    LIU Y, YANG L, XIE C C. Study on the static aeroelasticity for flexible aircraft based on non-planar vortex lattice method[J]. Engineering Mechanics, 2018, 35(2): 249-256(in Chinese).
    [16]
    王勖成. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997.

    WANG X C. Basic principle and numerical method of finite element method[M]. Beijing: Tsinghua University Press, 1997(in Chinese).
    [17]
    宋天霞, 郭建生, 杨元明. 非线性固体计算力学[M]. 武汉: 华中科技大学出版社, 2002.

    SONG T X, GUO J S, YANG Y M. Nonlinear solid computational mechanics[M]. Wuhan: Huazhong University of Science and Technology Press, 2002(in Chinese).
    [18]
    KATZ J, PLOTKIN A. Low-speed aerodynamics-from wing theory to panel methods[M]. Cambridge: Cambridge University Press, 2001: 400-404.
    [19]
    RODDEN W P, JOHNSON E H. MSC/NASTRAN aeroelastic analysis user's guide[Z]. Los Angeles: MSC, 1994.
    [20]
    CHEN P C, LIU D D, KARPEL M. ZAERO user's manual(Version 6.2)[Z]. Scottsdale: ZONA Technology, 2006.
    [21]
    XIE C C, YANG C. Surface splines generalization and large deflection interpolation[J]. Journal of Aircraft, 2007, 44(3): 1024-1026. doi: 10.2514/1.24571
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article views(1048) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return