Volume 47 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
CHENG Xuan, XIAO Cunying, DU Tao, et al. Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044(in Chinese)
Citation: CHENG Xuan, XIAO Cunying, DU Tao, et al. Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044(in Chinese)

Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space

doi: 10.13700/j.bh.1001-5965.2020.0044
Funds:

Strategic Priority Research Program of the Chinese Academy of Sciences XDA17010301

National Natural Science Foundation of China 11872128

National Natural Science Foundation of China 91952111

Youth Science and Technology Innovation Foundation of NSSC Y9211FAF3S

More Information
  • Corresponding author: XIAO Cunying, E-mail: xiaocunying@bnu.edu.cn
  • Received Date: 21 Feb 2020
  • Accepted Date: 27 Mar 2020
  • Publish Date: 20 Apr 2021
  • Based on the observation data of TIMED/SABER from 2002 to 2018, atmospheric density influence on aerothermodynamic environment of hypersonic vehicles is analyzed at 20-80 km. Based on the estimation method of heating transfer on stagnation in engineering, the relationship between the atmospheric density variations and the heating transfer changes is used to analyze the distribution characteristics of heating transfer changes in the vertical and horizontal directions qualitatively and quantitatively. The results show that: compared with the heating transfer calculated by USSA76, the heating transfer calculated by monthly mean density of SABER is higher in the middle and high latitudes in the summer hemisphere and lower in the winter hemisphere. There is a maximum value of heating transfer increments around 80 km in high latitudes of summer hemisphere. In summer, the maximum value of heating transfer increments in the southern hemisphere is higher than that of the northern hemisphere. Especially in January of southern hemisphere, the maximum value can reach 32.2%. In the longitude direction, the distribution of heat transfer in the summer hemisphere shows a small difference, while the heating transfer distribution in the winter hemisphere is significantly different. Considering disturbances in the real atmosphere, the heating transfer predicted by SABER is higher than that of USSA76 by up to 40.7% and 36.6% in summer of the southern and northern hemispheres around 80 km, respectively. In the longitude direction, the distribution of heating transfer caused by atmospheric disturbance is significantly different. Therefore, the effects of atmospheric disturbances on hypersonic vehicles cannot be ignored in the vehicle design process. Hypersonic vehicles should avoid crossing the southern or northern hemispheres during the summer to avoid the risk of increased heating transfer.

     

  • loading
  • [1]
    HIMA B H, VENKAT R M, YESUBABU V, et al. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 169: 101-113. doi: 10.1016/j.jastp.2018.01.029
    [2]
    HOCKE K. Response of the middle atmosphere to the geomagnetic storm of November 2004[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154: 86-91. doi: 10.1016/j.jastp.2016.12.013
    [3]
    PATEL N, SHARMA S, JOSHI V, et al. Observations of middle atmospheric seasonal variations and study of atmospheric oscillations at equatorial regions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193: 105066. doi: 10.1016/j.jastp.2019.105066
    [4]
    PERTSEV N N, SEMENOV A I, SHEFOV N N. Empirical model of vertical structure of the middle atmosphere: Seasonal variations and long-term changes of temperature and number density[J]. Advances in Space Research, 2006, 38(11): 2465-2469. doi: 10.1016/j.asr.2006.02.079
    [5]
    SHIBATA K, KODERA K. Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(1-2): 125-143. doi: 10.1016/j.jastp.2004.07.022
    [6]
    KAIFLER N, KAIFLER B, EHARD B, et al. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 16-27. doi: 10.1016/j.jastp.2017.03.003
    [7]
    MAYR H G, MENGEL J G, CHAN K L, et al. Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Tides and planetary waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(7-8): 711-730. doi: 10.1016/j.jastp.2011.01.019
    [8]
    PANCHEVA D, MUKHTAROV P. Atmospheric tides and planetary waves: Recent progress based on SABER/TIMED temperature measurements (2002-2007)[M]//ABDU M A, PANCHEVA D. Aeronomy of the Earth's atmosphere and ionosphere. Berlin: Springer, 2011: 19-56.
    [9]
    杜涛, 陈闽慷, 李凰立, 等. 高超声速气动加热关联方法的适应性分析[J]. 宇航学报, 2018, 39(9): 1039-1046.

    DU T, CHEN M K, LI H L, et al. Suitability analysis on correlation relation of aerothermodynamics entry environment for hypersonic flying vehicles[J]. Journal of Astronautics, 2018, 39(9): 1039-1046(in Chinese).
    [10]
    陈闽慷, 杜涛, 胡雄, 等. 北半球高空大气参数波动对临近空间飞行热环境的影响[J]. 科学通报, 2017, 62(13): 1402-1409.

    CHEN M K, DU T, HU X, et al. Effect of atmosphere parameter oscillation at high altitude in the northern hemisphere for near space hypersonic flight aerothermodynamic prediction[J]. Chinese Science Bulletin, 2017, 62(13): 1402-1409(in Chinese).
    [11]
    AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449. doi: 10.1016/j.paerosci.2011.06.001
    [12]
    HUEBNER L, MITCHELL A, BOUDREAUX E. Experimental results on the feasibility of an aerospike for hypersonic missiles[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1955: 95-0737.
    [13]
    李健, 侯中喜, 刘新建, 等. 基于扰动大气模型的动力推进高超声速飞行器弹道特性分析[J]. 国防科技大学学报, 2007, 29(4): 6-11. doi: 10.3969/j.issn.1001-2486.2007.04.002

    LI J, HOU Z X, LIU X J, et al. Trajectories analyse for hypersonic vehicle with scramjet based on perturbation atmosphere model[J]. Journal of National University of Defense Technology, 2007, 29(4): 6-11(in Chinese). doi: 10.3969/j.issn.1001-2486.2007.04.002
    [14]
    程路, 姜长生, 都延丽, 等. 变化风场下近空间飞行器机体/发动机一体化飞行力学建模与分析[J]. 宇航学报, 2012, 33(5): 547-555. doi: 10.3873/j.issn.1000-1328.2012.05.004

    CHENG L, JIANG C S, DU Y L, et al. Flight dynamics modeling of airframe/engine integrated near space vehicle in varying wind field[J]. Journal of Astronautics, 2012, 33(5): 547-555(in Chinese). doi: 10.3873/j.issn.1000-1328.2012.05.004
    [15]
    孙磊, 廉璞, 常晓飞, 等. 临近空间大气环境建模及其对飞行器影响[J]. 指挥控制与仿真, 2016, 38(5): 107-111. doi: 10.3969/j.issn.1673-3819.2016.05.023

    SUN L, LIAN P, CHANG X F, et al. Near space atmosphere modeling and its effect on the aircraft[J]. Command Control & Simulation, 2016, 38(5): 107-111(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.05.023
    [16]
    杨钧烽, 肖存英, 胡雄, 等. 临近空间风切变特性及其对飞行器的影响[J]. 北京亚洲成人在线一二三四五六区学报, 2019, 45(1): 57-65. doi: 10.3969/j.issn.1005-4561.2019.01.019

    YANG J F, XIAO C Y, HU X, et al. Wind shear characteristics in near space and their impacts on air vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 57-65(in Chinese). doi: 10.3969/j.issn.1005-4561.2019.01.019
    [17]
    ESPLIN R, ZOLLINGER L, BATTY C, et al. SABER instrument design update[J]. Infrared Spaceborne Remote Sensing Ⅲ, 1995, 2553: 253-263. doi: 10.1117/12.221361
    [18]
    REMSBERG E E, MARSHALL B T, GARCIA-COMAS M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): D17101. doi: 10.1029/2008JD010013
    [19]
    GUHARAY A, NATH D, PANT P, et al. Middle atmospheric thermal structure obtained from Rayleigh lidar and TIMED/SABER observations: A comparative study[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D18): D18105. doi: 10.1029/2009JD011963
    [20]
    宫晓艳, 胡雄, 吴小成, 等. COSMIC大气掩星与SABER/TIMED探测温度数据比较[J]. 地球物理学报, 2013, 56(7): 2152-2162.

    GONG X Y, HU X, WU X C, et al. Comparision of temperature measurements between COSMIC atmospheric radio occulation and SABER/TIMED[J]. Chinese Journal of Geophysics, 2013, 56(7): 2152-2162(in Chinese).
    [21]
    XU J Y, SMITH A K, LIU H L, et al. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (TIMED)[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D13): D13107. doi: 10.1029/2008JD011298
    [22]
    XU J Y, SMITH A K, YUAN W, et al. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D24): D24106. doi: 10.1029/2007JD008546
    [23]
    万田, 刘洪伟, 樊菁. 100 km附近大气密度模型的误差带和置信度[J]. 中国科学: 物理学力学天文学, 2015, 45(12): 52-58.

    WAN T, LIU H W, FAN J. Error band and confidence coefficient of atmospheric density models around altitude 100 km[J]. Science Sinica Physica, Mechania & Astronomica, 2015, 45(12): 52-58(in Chinese).
    [24]
    肖存英, 胡雄, 杨钧烽, 等. 临近空间38°N大气密度特性及建模技术[J]. 北京亚洲成人在线一二三四五六区学报, 2017, 43(9): 1757-1765. doi: 10.13700/j.bh.1001-5965.2016.0735

    XIAO C Y, HU X, YANG J F, et al. Characteristics of atmospheric density at 38° N in near space and its modeling technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1757-1765(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0735
    [25]
    肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221.

    XIAO C Y, HU X, WANG B, et al. Quantiative studies on the variations of near space atmospheric fluctuation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221(in Chinese).
    [26]
    OFFERMANN D, JARISCH M, OBERHEIDE J, et al. Global wave activity from upper stratosphere to lower thermosphere: A new turbopause concept[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(15): 1709-1729. doi: 10.1016/j.jastp.2006.01.013
    [27]
    PERINI L L. Compilation and correlation of stagnation convective heating rates on spherical bodies[J]. Journal of Spacecraft and Rockets, 1975, 12(3): 189-191. doi: 10.2514/3.27829
    [28]
    HAGAN M E, FORBES J M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D24): 1-15. doi: 10.1029/2001JD001236/full
    [29]
    GRIEGER N, SCHMITZ G, ACHATZ U. The dependence of the nonmigrating diurnal tide in the mesosphere and lower thermosphere on stationary planetary waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66: 733-754. doi: 10.1016/j.jastp.2004.01.022
    [30]
    LIEBERMAN R S, OBERHEIDE J, HAGAN M E, et al. Variability of diurnal tides and planetary waves during November 1978-May 1979[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(6-9): 517-528. doi: 10.1016/j.jastp.2004.01.006
    [31]
    HAGAN M E, FORBES J M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release[J]. Journal of Geophysical Research Space Physics, 2003, 108(A2): 1062. doi: 10.1029/2001JD001236/full
    [32]
    ANGELAS I, COLL M, FORBES J M. Nonlinear interactions in the upper atmosphere: The s=1 and s=3 nonmigrating semidiurnal tides[J]. Journal of Geophysical Research Space Physics, 2002, 107(A8): 1157. doi: 10.1029/2001JA900179/full
    [33]
    YAMASHITA K, MIYAHARA S, MIYOSHI Y, et al. Seasonal variation of non-migrating semidiurnal tide in the polar MLT region in a general circulation model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(8-11): 1083-1094. doi: 10.1016/S1364-6826(02)00059-7
    [34]
    XIAO C Y, HU X. Analysis on the global morphology of stratospheric gravity wave activity deduced from the COSMIC GPS occultation profiles[J]. GPS Solutions, 2010, 14(1): 65-74. doi: 10.1007/s10291-009-0146-z
    [35]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2003, 41(1): 1003. doi: 10.1029/2001RG000106
    [36]
    YI F, KLOSTERMEYER J, RUSTER R. VHF radar observation of gravity wave critical layers in the mid-latitude summer mesopause region[J]. Geophysical Research Letters, 1991, 18(4): 697-700. doi: 10.1029/91GL00471
    [37]
    梁晨, 薛向辉, 陈廷娣. 基于COSMIC卫星观测数据的平流层重力波的全球分布特征研究[J]. 地球物理学报, 2014, 57(11): 3668-3678. doi: 10.6038/cjg20141121

    LIANG C, XUE X H, CHEN T D. An investigation of the global morphology of stratosphere gravity waves based on COSMIC observations[J]. Chinese Journal of Geophysics, 2014, 57(11): 3668-3678(in Chinese). doi: 10.6038/cjg20141121
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(1239) PDF downloads(312) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return