Volume 47 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
WANG Ershen, REN Hongfan, HONG Chen, et al. Structural properties and static robustness of function call networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039(in Chinese)
Citation: WANG Ershen, REN Hongfan, HONG Chen, et al. Structural properties and static robustness of function call networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039(in Chinese)

Structural properties and static robustness of function call networks

doi: 10.13700/j.bh.1001-5965.2020.0039
Funds:

National Key R & D Program of China 2018AAA0100804

National Natural Science Foundation of China 61571309

National Natural Science Foundation of China 61703287

National Natural Science Foundation of China 61972040

Key R & D Projects of Liaoning Province 2020JH2/10100045

Talent Project of Revitalization Liaoning XLYC1907022

High-Level Innovation Talent Project of Shenyang RC190030

More Information
  • Corresponding author: HONG Chen. E-mail: hchchina@sina.com
  • Received Date: 08 Feb 2020
  • Accepted Date: 01 May 2020
  • Publish Date: 20 Apr 2021
  • In this paper, we build a directed function call software network model by analyzing the source code of the open source software tar and MySQL. The network structural properties, such as degree distribution and clustering coefficient, are investigated. The results indicate that the coupling of multiple major software modules leads to a high clustering coefficient of the entire software network; the node dependence (influence) is of a positive correlation with the node's out-degree (in-degree); the node influence has a negative correlation with its dependence. Based on the weak connectivity and strong connectivity robustness measure of directed networks, we use different node attack strategies to investigate the static robustness of function call networks. The experimental results show that, for tar network, high out-degree strategy obtains the best attack effect with respect to weak connectivity; in the case of MySQL network under weak connectivity, high in-degree strategy achieves the best attack effect.

     

  • loading
  • [1]
    BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509
    [2]
    胡赛, 熊慧军, 李学勇, 等. 多关系蛋白质网络构建及其应用研究[J]. 自动化学报, 2015, 41(2): 2155-2163.

    HU S, XIONG H J, LI X Y, et al. The construction and application of multi-relational protein networks[J]. Acta Automatica Sinica, 2015, 41(2): 2155-2163(in Chinese).
    [3]
    ZHANG J H, HU F N, WANG S L, et al. Structural vulnerability and intervention of high speed railway networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 462(c): 743-751.
    [4]
    HONG C, ZHANG J, CAO X B, et al. Structural properties of the Chinese air transportation multilayer network[J]. Chaos, Solitons and Fractals, 2016, 86: 28-34. doi: 10.1016/j.chaos.2016.01.027
    [5]
    VASA R, SCHNEIDER J G, WOODWARD C, et al. Detecting structural changes in object oriented software systems[C]//Proceedings of the 2005 International Symposium on Empirical Software Engineering. Piscataway: IEEE Press, 2005: 479-486.
    [6]
    VALVERDE S, CANCHO R F, SOLÉ R V. Scale-free networks from optimal design[J]. Europhysics Letters, 2002, 60(4): 512-517. doi: 10.1209/epl/i2002-00248-2
    [7]
    VALVERDE S, SOLÉ R V. Network motifs in computational graphs: A case study in software architecture[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 147-154.
    [8]
    MYERS C R. Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(4): 046116. doi: 10.1103/PhysRevE.68.046116
    [9]
    李兵, 王浩, 李曾扬, 等. 基于复杂网络的软件复杂性度量研究[J]. 电子学报, 2006, 34(S1): 2372-2375.

    LI B, WANG H, LI Z Y, et al. Study on software complexity measure based on complex network[J]. Acta Electronica Sinica, 2006, 34(S1): 2372-2375(in Chinese).
    [10]
    汪北阳, 吕金虎. 复杂软件系统的软件网络结点影响分析[J]. 软件学报, 2013, 24(12): 2814-2829.

    WANG B Y, LV J H. Analysis of software network node impact of complex software systems[J]. Journal of Software, 2013, 24(12): 2814-2829(in Chinese).
    [11]
    HUANG L Z, AI J, PEI H Y. Software network models based on dynamic execution for fault propagation research[C]//IEEE International Conference on Software Quality. Piscataway: IEEE Press, 2015: 56-61.
    [12]
    何鹏, 王鹏, 李兵. 基于多粒度软件网络模型的软件系统演化分析[J]. 电子学报, 2018, 46(2): 258-267.

    HE P, WANG P, LI B. Evolution analysis of software system based on multi-granularity software network model[J]. Acta Electronica Sinica, 2018, 46(2): 258-267(in Chinese).
    [13]
    ZHAO X S, ZHANG H H, ZHANG M Y, et al. Identifying influential nodes in large-scale software networks[C]//IEEE Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE Press, 2017: 764-767.
    [14]
    PAN W F, LI B, MA Y T, et al. Multi-granularity evolution analysis of software using complex network theory[J]. Journal of Systems Science and Complexity, 2011, 24(6): 1068-1082. doi: 10.1007/s11424-011-0319-z
    [15]
    XIA Y X, ZHANG W P, ZHANG X J. The effect of capacity redundancy disparity on the robustness of interconnected networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 447: 561-568. doi: 10.1016/j.physa.2015.12.077
    [16]
    TAN F, XIA Y, WEI Z. Robust-yet-fragile nature of interdependent networks[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(5): 052809. doi: 10.1103/PhysRevE.91.052809
    [17]
    WANG J W, SUN E H, XU B, et al. Robust-yet-fragile nature of interdependent networks[J]. Chao, Solitons and Fractals, 2015, 91(5): 052809.
    [18]
    王尔申, 李宇, 宏晨, 等. Linux软件网络的结构属性及静态稳健性[J]. 电信科学, 2019, 11(11): 9-18.

    WANG E S, LI Y, HONG C, et al. Structural properties and static robustness of Linux software network[J]. Telecommunication Science, 2019, 11(11): 9-18(in Chinese).
    [19]
    王小龙, 侯刚, 任龙涛, 等. 软件动态执行网络建模及其级联故障分析[J]. 计算机科学, 2014, 41(8): 109-114.

    WANG X L, HOU G, REN L T, et al. Software dynamic execution network modeling and its cascading failure analysis[J]. Computer Science, 2014, 41(8): 109-114(in Chinese).
    [20]
    HE H T, REN R, ZHANG B, et al. Analysis on impact of node failure in software execution network[J]. Journal of Computational Information Systems, 2015, 11(6): 2217-2225.
    [21]
    王竣德, 老松杨, 阮逸润, 等. 基于节点负载容忍度的相依网络鲁棒性研究[J]. 系统工程与电子技术, 2017, 39(11): 2477-2483. doi: 10.3969/j.issn.1001-506X.2017.11.13

    WANG J D, LAO S Y, RUAN Y R, et al. Research on robustness of dependent networks based on node load tolerance[J]. Systems Engineering and Electronics, 2017, 39(11): 2477-2483(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.11.13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views(820) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return