Volume 46 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
YANG Yan, ZHANG Dexin, YUE Huiet al. Image fusion dehazing algorithm based on minimum channel and logarithmic attenuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1844-1852. doi: 10.13700/j.bh.1001-5965.2019.0552(in Chinese)
Citation: YANG Yan, ZHANG Dexin, YUE Huiet al. Image fusion dehazing algorithm based on minimum channel and logarithmic attenuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1844-1852. doi: 10.13700/j.bh.1001-5965.2019.0552(in Chinese)

Image fusion dehazing algorithm based on minimum channel and logarithmic attenuation

doi: 10.13700/j.bh.1001-5965.2019.0552
Funds:

National Natural Science Foundation of China 61561030

Research Fund of Department of Finance of Gansu Province 214138

Research Fund of Teaching Reform Project of Lanzhou Jiaotong University 160012

More Information
  • Corresponding author: YANG Yan. E-mail:1275022532@qq.com
  • Received Date: 23 Oct 2019
  • Accepted Date: 27 Jan 2020
  • Publish Date: 20 Oct 2020
  • The image color degradation and blurred details acquired by various image acquisition systems in foggy weather seriously affect the stability and effectiveness of outdoor imaging system, so it is necessary to study image dehazing technology. Aimed at the incomplete edge dehazing of dark channel dehazing algorithm, a fusion dehazing method based on the minimum channel and logarithmic attenuation is proposed. Firstly, the logarithmic attenuation of the minimum channel map of the foggy image is taken as a priori hypothesis, and then cross-bilateral filtering is performed to eliminate the texture effect. Before and after the operation, downsampling and upsampling operations are performed respectively to improve the operation speed, then we get the initial transmittance. Secondly, Canny operator is used to detect the edge of the minimum channel and logarithmic attenuation is carried out to obtain the edge information map. The initial transmittance and the edge information map are weighted and fused to compose the optimal transmittance. Finally, the atmospheric light value obtained by the improved quadtree search method is used to solve the atmospheric scattering model and restore the fog-free image. The experimental results demonstrate that the proposed algorithm can effectively suppress halo effect and remove edge residual fog, and has good real-time performance.

     

  • loading
  • [1]
    高若婉, 梅树立, 李丽, 等.基于小波精细积分与暗通道的农田图像去雾算法[J].农业机械学报, 2019, 50(S1):167-174. http://www.cnki.com.cn/Article/CJFDTotal-NYJX2019S1026.htm

    GAO R W, MEI S L, LI L, et al.Farmland image dehazing method based on wavelet precise integration and dark channel prior[J].Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(S1):167-174(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-NYJX2019S1026.htm
    [2]
    刘海波, 杨杰, 吴正平, 等.基于暗通道先验和Retinex理论的快速单幅图像去雾方法[J].自动化学报, 2015, 41(7):1264-1273.

    LIU H B, YANG J, WU Z P, et al.A fast single image dehazing method based on dark channel prior and Retinex theory[J].Acta Automatica Sinica, 2015, 41(7):1264-1273(in Chinese).
    [3]
    马忠丽, 文杰.融合边缘信息的单尺度Retinex海雾去除算法[J].计算机辅助设计与图形学学报, 2015, 27(2):217-225.

    MA Z L, WEN J.Single-scale Retinex sea fog removal algorithm fused the edge information[J].Journal of Computer-Aided Design and Computer Graphics, 2015, 27(2):217-225(in Chinese).
    [4]
    云海姣, 吴志勇, 王冠军, 等.结合直方图均衡和模糊集理论的红外图像增强[J].计算机辅助设计与图形学学报, 2015, 27(8):1498-1505.

    YUN H J, WU Z Y, WANG G J, et al.Enhancement of infrared image combined with histogram equalization and fuzzy set theory[J].Journal of Computer-Aided Design and Computer Graphics, 2015, 27(8):1498-1505(in Chinese).
    [5]
    CAI B L, XU X M, JIA K, et al.Dehaze net:An end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11):5187-5198. doi: 10.1109/TIP.2016.2598681
    [6]
    CHEN D D, HE M M, FAN Q N, et al.Gated context aggregation network for image dehazing and deraining[C]//2019 IEEE Winter Conference on Applications of Computer Vision.Piscataway: IEEE Press, 2019: 1375-1383.
    [7]
    DU Y X, LI X.Perceptually optimized generative adversarial network for single image dehazing[EB/OL].(2018-05-03)[2019-10-20].
    [8]
    HE K M, SUN J, TANG X O.Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway: IEEE Press, 2009: 1956-1963.
    [9]
    HE K M, SUN J, TANG X O.Guided image filtering[C]//Proceedings of the 2010 Conference on Computer Vision, 2010: 1-14.
    [10]
    陈书贞, 任占广, 练秋生.基于改进暗通道和导向滤波的单幅图像去雾算法[J].自动化学报, 2016, 42(3):455-465.

    CHEN S Z, REN Z G, LIAN Q S.Single image dehazing algorithm based on improved dark channel prior and guided filter[J].Acta Automatica Sinica, 2016, 42(3):455-465(in Chinese).
    [11]
    杨燕, 陈高科, 周杰.基于高斯权重衰减的迭代优化去雾算法[J].自动化学报, 2019, 45(4):819-828.

    YANG Y, CHEN G K, ZHOU J.Iterative optimization defogging algorithm using Gaussian weight decay[J].Acta Automatica Sinica, 2019, 45(4):819-828(in Chinese).
    [12]
    杨燕, 陈高科.基于光补偿和逐像素透射率的图像复原算法[J].通信学报, 2017, 38(5):48-56.

    YANG Y, CHEN G K.Single image visibility restoration using optical compensation and pixel-by-pixel transmission estimation[J].Journal on Communications, 2017, 38(5):48-56(in Chinese).
    [13]
    YANG Y, ZHANG C, LIU L L, et al.Visibility restoration of single image captured in dust and haze weather conditions[J].Multidim System Sign Process, 2020, 31:619-633. doi: 10.1007/s11045-019-00678-z
    [14]
    MCCARTNEY E J.Optics of the atmosphere:Scattering by mole-cules and particles[M].New York:John Wiley and Sons, 1976:421.
    [15]
    王泽胜, 董宝田, 赵芳璨, 等.基于改进暗通道先验的交通图像去雾新方法[J].控制与决策, 2018, 33(3):486-490.

    WANG Z S, DONG B T, ZHAO F C, et al.Improved dehazing method for traffic images based on dark channel prior[J].Control and Decision, 2018, 33(3):486-490(in Chinese).
    [16]
    KIM J H, JANG W D, SIM J Y, et al.Optimized contrast enhancement for real-time image and video dehazing[J].Journal of Visual Communication and Image Representation, 2013, 24(3):410-425. doi: 10.1016/j.jvcir.2013.02.004
    [17]
    ZHU Q, MAI J, SHAO L.A fast single image haze removal algorithm using color attenuation prior[J].IEEE Transactions on Image Processing, 2015, 24(11):3522-3533. doi: 10.1109/TIP.2015.2446191
    [18]
    WANG W, YUAN X, WU X, et al.Fast image dehazing method based on linear transformation[J].IEEE Transactions on Multimedia, 2017, 19(6):1142-1155.
    [19]
    XU Y, WEN J, FEI L, et al.Review of video and image defogging algorithms and related studies on image restoration and enhancement[J].IEEE Access, 2017, 4(1):165-188.
    [20]
    MENG G F, WANG Y, DUAN J.Efficient image dehazing with boundary constraint and contextual regularization[C]//IEEE International Conference on Computer Vision(ICCV).Piscataway: IEEE Press, 2014: 617-624.
    [21]
    HAUTIERE N, TAREAL J P, AUBERT D, et al.Blind contrast enhancement assessment by gradient ratioing at visible edges[J].Image Analysis and Stereology, 2011, 27(2):87-95. doi: 10.5566/ias.v27.p87-95
    [22]
    YU X, XIAO C, DENG M, et al.A classification algorithm to distinguish image as haze or non-haze[C]//Sixth International Conference on Image and Graphics.Piscataway: IEEE Press, 2011: 286-289.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(746) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return