Volume 46 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LIU Zengbo, QIAO Jianzhong, GUO Lei, et al. Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546(in Chinese)
Citation: LIU Zengbo, QIAO Jianzhong, GUO Lei, et al. Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546(in Chinese)

Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft

doi: 10.13700/j.bh.1001-5965.2019.0546
More Information
  • Corresponding author: LIU Zengbo, E-mail: liuzengbo@cqjj8.com
  • Received Date: 16 Oct 2019
  • Accepted Date: 03 Jan 2020
  • Publish Date: 20 Oct 2020
  • This paper studies the control problem of approaching and docking autonomously system including an on-orbit servicing spacecraft with flexible appendages and an out-of-control target considering the coupled relative position and attitude dynamic. Choosing the relative position and the relative attitude quaternion as the system state and considering the relative position and attitude coupled which is produced by the propulsion installation error, the relative position and attitude coupled dynamics model of the servicing spacecraft with respect to the out-of-control target is established in the form of state equation. While considering the flexible appendages of servicing spacecraft, the vibration from flexible appendages is modeled as a derivative-bounded disturbance to the position and attitude control system of the rigid body. Then a nonlinear feedback control algorithm is proposed based on feedback linearization. Aimed at attenuating the modeled disturbance, a disturbance-observer-based control is formulated for feed forward compensation of the elastic vibration. Then a composite controller with a hierarchical architecture is designed by combining disturbance-observer-based control and nonlinear feedback control, where disturbance-observer-based control is used to compensate the disturbance from the flexible appendages. Numerical simulations and semi-physicd closed-loop experiments are performed to demonstrate that by using the composite hierarchical control law, disturbances can be effectively attenuated and the nonlinear feedback control law is robust with perfect tracking performance.

     

  • loading
  • [1]
    徐李佳, 胡勇.非合作机动目标交会的相对位置控制术[J].空间控制技术与应用, 2015, 41(6):13-18. http://www.cnki.com.cn/Article/CJFDTotal-KJKZ201506004.htm

    XU L J, HU Y.Control for relative position of spacecraft rendezvous with a non-cooperative maneuver target[J].Aerospace Control and Application, 2015, 41(6):13-18(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KJKZ201506004.htm
    [2]
    胡勇, 徐李佳, 解永春.针对失控翻滚目标航天器的交会对接控制[J].宇航学报, 2015, 36(1):47-57.

    HU Y, XU L J, XIE Y C.Characteristic model based control in rendezvous and docking with a tumbling target.spacecraft[J].Journal of Astronautics, 2015, 36(1):47-57(in Chinese).
    [3]
    卢伟, 耿云海, 陈雪芹, 等.在轨服务航天器对目标的相对位置和姿态耦合控制[J].航空学报, 2011, 32(5):857-865.

    LU W, GENG Y H, CHEN X Q, et al.Coupled control of relative position of relative position and attitude for on-orbit servicing spacecraft with respect to target[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(5):857-865(in Chinese).
    [4]
    XIN M, PAN H J.Nonlinear optimal control of spacecraft approaching a tumbling target[J].Aerospace Science and Technology, 2011, 15(2):79-89. doi: 10.1016/j.ast.2010.05.009
    [5]
    姜博严, 胡庆雷, 石忠, 等.与自由翻滚目标近距离段交会对接的相对姿轨耦合控制[J].宇航学报, 2014, 35(1):54-60.

    JIANG B Y, HU Q L, SHI Z, et al.Relative position and attitude coupled controller design for approaching and docking with a freely tumbling target[J].Journal of Astronautics, 2014, 35(1):54-60(in Chinese).
    [6]
    LU W, GENG Y H, CHEN X Q, et al.Relative position and attitude coupled control for autonomous docking with a tumbling target[J].International Journal of Control and Automation, 2011, 4(4):1-22.
    [7]
    韩飞, 吴限德, 段广仁, 等.逼近与跟踪翻滚目标的双滑模面姿轨耦合控制[J].哈尔滨工程大学学报, 2018, 39(1):23-32.

    HAN F, WU X D, DUAN G R, et al.Attitude and orbit coupled dual slidingmode surface control for approaching and tracking tumbling target[J].Journal of Harbin Engineering University, 2018, 39(1):23-32(in Chinese).
    [8]
    郭永, 宋申民, 李学辉.非合作交会对接的姿态和轨道耦合控制[J].控制理论与应用, 2016, 33(5):638-644.

    GUO Y, SONG S M, LI X H.Attitude and orbit coupled control for non-cooperative rendezvous and docking[J].Control Theory & Applications, 2016, 33(5):638-644(in Chinese).
    [9]
    LV Y Y, HU Q L, MA G F, et al.6-DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties[J].ISA Transactions, 2011, 50(4):573-580. doi: 10.1016/j.isatra.2011.04.001
    [10]
    KRISTIANSEN R, NICKLASSON P J, GRAVDAHL J T.Spacecraft coordination control in 6-DOF:Integrator back-stepping vs passivity based control[J].Automatica, 2008, 44(11):2896-2904. doi: 10.1016/j.automatica.2008.04.019
    [11]
    SARIYILDIZ E, OHNISHI K.A guide to design disturbance observer[J].Journal of Dynamic Systems, Measurement, and Control, 2014, 136(2):021011. doi: 10.1115/1.4025801
    [12]
    CHEN W H, BALANCE D J, GAWTHROP P J, et al.A nonlinear disturbance observer for robotic manipulators[J].IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938. doi: 10.1109/41.857974
    [13]
    GUO L, CHEN W.Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J].International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125. doi: 10.1002/rnc.978
    [14]
    GUO L, CAO S.Anti-disturbance control for systems with multiple disturbances[M].Boca Raton:CRC Press, 2013.
    [15]
    CHEN W H, YANG J, GUO L, et al.Disturbance observer-based control and related methods:An overview[J].IEEE Transactions on Industrial Electronics, 2016, 63(2):1083-1095. doi: 10.1109/TIE.2015.2478397
    [16]
    LIU H, GUO L, ZHANG Y M.An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts[J].Nonlinear Dynamics, 2012, 67(3):2081-2088. doi: 10.1007/s11071-011-0130-3
    [17]
    ZHU Y K, QIAO J Z, GUO L, et al.Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J].IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. doi: 10.1109/TIE.2018.2838065
    [18]
    CHEN K Y.Robust optimal adaptive sliding mode control with the disturbance observer for a manipulator robot system[J].International Journal of Control, Automation, and Systems, 2018, 16(4):1701-1715. doi: 10.1007/s12555-017-0710-1
    [19]
    耿长福.航天器动力学[M].北京:中国科学技术出版社, 2008.

    GEN C F.Spacecraft dynamics[M].Beijing:China Science & Technology Press, 2008(in Chinese).
    [20]
    朱仁章.航天器交会对接技术[M].北京:国防工业出版社, 2007.

    ZHU R Z.Rendezvous and docking techniques of spacecraft[M].Beijing:National Defense Industry Press, 2007(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(1004) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return