Volume 46 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
WANG Jinhua, ZHU Enchang, CAO Jie, et al. Fault diagnosis method for wind turbine pitch system based on modified IMM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1460-1468. doi: 10.13700/j.bh.1001-5965.2019.0526(in Chinese)
Citation: WANG Jinhua, ZHU Enchang, CAO Jie, et al. Fault diagnosis method for wind turbine pitch system based on modified IMM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1460-1468. doi: 10.13700/j.bh.1001-5965.2019.0526(in Chinese)

Fault diagnosis method for wind turbine pitch system based on modified IMM

doi: 10.13700/j.bh.1001-5965.2019.0526
Funds:

National Natural Science Foundation of China 61763028

Natural Science Foundation of Gansu Province, China 1506RJZA105

More Information
  • Corresponding author: WANG Jinhua. E-mail:wjh0615@lut.edu.cn
  • Received Date: 26 Sep 2019
  • Publish Date: 20 Aug 2020
  • Aimed at the diagnostic accuracy reduction, speed drop and estimation accuracy loss caused by the fixed model transition probability of Interactive Multi-Model (IMM) fault diagnosis method, this paper proposes a fault diagnosis method based on model transition probability and model probability modification, which is combined with the Particle Filter (PF) to achieve multi-fault diagnosis of wind turbine pitch sensor. In the non-mode-switching phase, the posterior model probability gradient information is used to design the modification function of the model transition probability to suppress the influence of noise on the accuracy of IMM estimation. In the mode-switching phase, the model probability inversion strategy is used to quickly switch models to compensate for diagnostic delay and error diagnosis caused by model soft handoff. The simulation results show that the fault diagnosis accuracy, model switching speed and state estimation accuracy of the proposed method are improved.

     

  • loading
  • [1]
    曾军, 陈艳峰, 杨苹, 等.大型风力发电机组故障诊断综述[J].电网技术, 2018, 42(3):849-860.

    ZENG J, CHEN Y F, YANG P, et al.Review of fault diagnosis methods of large-scale wind turbines[J].Power System Technology, 2018, 42(3):849-860(in Chinese).
    [2]
    吴定会, 刘稳, 张秀丽.基于改进多胞形观测器的桨距执行器故障诊断[J].信息与控制, 2018, 47(5):26-32.

    WU D H, LIU W, ZHANG X L.Fault diagnosis of pitch actuator using improved polytope observer[J].Information and Control, 2018, 47(5):26-32(in Chinese).
    [3]
    CHEN L, SHI F, PATTON R.Active FTC for hydraulic pitch system for an off-shore wind turbine[C]//Conference on Control and Fault-Tolerant Systems(SysTol).Piscataway: IEEE Press, 2013: 510-515.
    [4]
    吴定会, 翟艳杰, 李意扬, 等.基于辨识算法的风力机桨距执行器故障诊断[J].控制工程, 2016, 23(6):795-799.

    WU D H, ZHAI Y J, LI Y Y, et al.Fault diagnosis for pitch actuators of wind turbines based on identification algorithm[J].Control Engineering of China, 2016, 23(6):795-799(in Chinese).
    [5]
    VASQUEZ S, KINNAERT M, PINTELON R.Active fault diagnosis on a hydraulic pitch system based on frequency-domain identification[J].IEEE Transactions on Control Systems Technology, 2019, 27(2):663-678. doi: 10.1109/TCST.2017.2772890
    [6]
    赵洪山, 连莎莎, 邵玲.基于模型的风电机组变桨距系统故障检测[J].电网技术, 2015, 39(2):440-444.

    ZHAO H S, LIAN S S, SHAO L.A model-based fault detection for variable-pitch system of wind turbines[J].Power System Technology, 2015, 39(2):440-444(in Chinese).
    [7]
    WU D, ZHAI Y, GAO W, et al.Multi-innovation observer based fault detection for pitch system of wind turbines[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER).Piscataway: IEEE Press, 2015: 677-680.
    [8]
    ZHU J S, MA K C, HAJIZADEH A.Fault detection and isolation for wind turbine electric pitch system[C]//2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS).Piscataway: IEEE Press, 2017: 618-623.
    [9]
    ZHANG Y, LI X R.Detection and diagnosis of sensor and actuator failures using IMM estimator[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4):1293-1313. doi: 10.1109/7.722715
    [10]
    周卫东, 孙天, 储敏, 等.交互式多模型粒子滤波优化重采样算法[J].北京亚洲成人在线一二三四五六区学报, 2017, 43(5):865-871. doi: 10.13700/j.bh.1001-5965.2016.0348

    ZHOU W D, SUN T, CHU M, et al.Interacting multiple model particle filter optimization resampling algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5):865-871(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0348
    [11]
    GADSDEN S A, SONG Y, HABIBI S R.Novel model-based estimators for the purposes of fault detection and diagnosis[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1237-1249. doi: 10.1109/TMECH.2013.2253616
    [12]
    顾欣欣.基于多模型的高速列车牵引系统多故障分离方法研究[D].南京: 南京亚洲成人在线一二三四五六区, 2016: 39-55.

    GU X X.Mutiple-model based fault detection and isolation for electric traction system of railway high-speed[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 39-55(in Chinese).
    [13]
    邢璐璐.基于IMM的车辆垂向减振器故障诊断方法研究[J].中国铁道科学, 2018, 39(6):121-127.

    XING L L.Fault diagnosis method of vehicle vertical damper based on IMM[J].China Railway Science, 2018, 39(6):121-127(in Chinese).
    [14]
    郭志, 董春云, 蔡远利, 等.时变转移概率IMM-SRCKF机动目标跟踪算法[J].系统工程与电子技术, 2015, 37(1):24-30.

    GUO Z, DONG C Y, CAI Y L, et al.Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking[J].Systems Engineering and Electronics, 2015, 37(1):24-30(in Chinese).
    [15]
    许登荣, 程水英, 包守亮.自适应转移概率交互式多模型跟踪算法[J].电子学报, 2017, 45(9):2113-2120. doi: 10.3969/j.issn.0372-2112.2017.09.009

    XU D R, CHENG S Y, BAO S L.Interacting multiple model algorithm based on adaptive transition probability[J].Acta Electronica Sinica, 2017, 45(9):2113-2120(in Chinese). doi: 10.3969/j.issn.0372-2112.2017.09.009
    [16]
    ODGAARD P F, STOUSTRUP J, KINNAERT M.Fault-tolerant control of wind turbines:A benchmark model[J].IEEE Transactions on Control Systems Technology, 2013, 21(4):1168-1182. doi: 10.1109/TCST.2013.2259235
    [17]
    曹洁, 杜永红, 王进花.自适应蝙蝠算法优化PF的风力机桨距系统故障诊断方法[J].计算机应用与软件, 2018, 35(5):78-84. doi: 10.3969/j.issn.1000-386x.2018.05.014

    CAO J, DU Y H, WANG J H.Fault diagnosis method for pitch system of wind turbines based on adaptive bat algorithm optimized PF[J].Computer Applications and Software, 2018, 35(5):78-84(in Chinese). doi: 10.3969/j.issn.1000-386x.2018.05.014
    [18]
    刘悄然, 杨训.基于改进的交互式多模型粒子滤波算法[J].西北工业大学学报, 2018, 36(1):169-175. doi: 10.3969/j.issn.1000-2758.2018.01.024

    LIU Q R, YANG X.Improved interacting multiple model particle filter algorithm[J].Journal of Northwestern Polytechnical University, 2018, 36(1):169-175(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.01.024
    [19]
    王进花, 曹洁, 李伟, 等.强噪声环境下自适应CRPF故障诊断方法[J].北京亚洲成人在线一二三四五六区学报, 2018, 44(5):923-930. doi: 10.13700/j.bh.1001-5965.2017.0353

    WANG J H, CAO J, LI W, et al.An adaptive CRPF fault diagnosis method under strong noise condition[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):923-930(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0353
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(964) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return