Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
LYU Na, ZHOU Jiaxin, CHEN Zhuo, et al. A robustness-enhanced traffic classification method in airborne network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1237-1246. doi: 10.13700/j.bh.1001-5965.2019.0475(in Chinese)
Citation: LYU Na, ZHOU Jiaxin, CHEN Zhuo, et al. A robustness-enhanced traffic classification method in airborne network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1237-1246. doi: 10.13700/j.bh.1001-5965.2019.0475(in Chinese)

A robustness-enhanced traffic classification method in airborne network

doi: 10.13700/j.bh.1001-5965.2019.0475
Funds:

National Natural Science Foundation of China 61701521

National Natural Science Foundation of China 61703427

More Information
  • Corresponding author: LYU Na. E-mail: lvnn2007@163.com
  • Received Date: 02 Sep 2019
  • Accepted Date: 25 Nov 2019
  • Publish Date: 20 Jul 2020
  • The highly dynamic and highly unstable characteristics of the airborne network make it difficult for traffic monitoring equipment to extract the complete data flow load characteristics within a limited monitoring period, thus limiting the application of the deep learning based traffic classification method. Aimed at this problem, a robustness-enhanced airborne network traffic classification method is proposed. First, data stream samples are mapped to gray vector sets by data preprocessing and missing sample processing methods. Then, the Robustness-Enhanced Long-term Recursive Convolutional neural Network (RE-LRCN) classification model is trained based on the complete traffic training set. Finally, in the online classification stage, the loading space features of packets-sample deficient data flows and timing features of data flows are extracted and the traffic is classified with the RE-LRCN model. The experiment results on the packets-sample deficient test set show that the proposed method can effectively suppress the deterioration of the accuracy of classification due to the missing of packet samples.

     

  • loading
  • [1]
    霍大军.网络化集群作战研究[M].北京:国防大学出版社, 2013:66-68.

    HUO D J.Operation of network swarm[M].Beijing:National Defense University Press, 2013:66-68(in Chinese).
    [2]
    梁晓龙, 何吕龙, 张佳强, 等.航空集群构型控制及其演化方法[J].中国科学:技术科学, 2019, 49(3):277-287.

    LIANG X L, HE L L, ZHANG J Q, et al.Configuration control and evolutionary mechanism of aircraft swarm[M].Scientia Sinica(Technologica), 2019, 49(3):277-287(in Chinese).
    [3]
    CAO X B, YANG P, MOHAMED A, et al.Airborne communication networks:A survey[J].IEEE Journal on Selected Areas in Communications, 2018, 36(9):1907-1926. doi: 10.1109/JSAC.2018.2864423
    [4]
    吕娜, 杜思深, 张岳彤, 等.数据链理论与系统[M].北京:电子工业出版社, 2018:7-9.

    LV N, DU S S, ZHANG Y T, et al.Theory and system of data link[M].Beijing:Publishing House of Electronics Industry, 2018:7-9(in Chinese).
    [5]
    梁一鑫, 程光, 郭晓军, 等.机载网络体系结构及其协议栈研究进展[J].软件学报, 2016, 27(1):96-111.

    LIANG Y X, CHENG G, GUO X J, et al.Research progress on architecture and protocol stack of the airborne network[J].Journal of Software, 2016, 27(1):96-111(in Chinese).
    [6]
    NGUYEN T T, ARMITAGE G.A survey of techniques for internet traffic classification using machine learning[J].IEEE Communications Surveys & Tutorials, 2009, 10(4):56-76.
    [7]
    SHAFIQ M, YU X, LAGHARI A A, et al.Network traffic classification techniques and comparative analysis using machine learning algorithms[C]//20162nd IEEE International Conference on Computer and Communications (ICCC).Piscataway: IEEE Press, 2016: 2451-2455.
    [8]
    李勤, 师维, 孙界平, 等.基于卷积神经网络的网络流量识别技术研究[J].四川大学学报(自然科学版), 2017, 54(5):959-964. doi: 10.3969/j.issn.0490-6756.2017.05.011

    LI Q, SHI W, SUN J P, et al.The research of network traffic identification based on convolutional neural network[J].Journal of Sichuan University (Natural Science Edition), 2017, 54(5):959-964(in Chinese). doi: 10.3969/j.issn.0490-6756.2017.05.011
    [9]
    王勇, 周慧怡, 俸皓, 等.基于深度卷积神经网络的网络流量分类方法[J].通信学报, 2018, 39(1):14-23.

    WANG Y, ZHOU H Y, FENG H, et al.Network traffic classification method basing on CNN[J].Journal on Communications, 2018, 39(1):14-23(in Chinese).
    [10]
    SHI H, LI H, DAN Z, et al.An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification[J].Computer Networks, 2018, 132:81-98. doi: 10.1016/j.comnet.2018.01.007
    [11]
    WEI W, SHENG Y, WANG J, et al.HAST-IDS:Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J].IEEE Access, 2018, 6(99):1792-1806.
    [12]
    ZOU Z, GE J, ZHENG H, et al.Encrypted traffic classification with a convolutional Long short-term memory neural network[C]//2018 IEEE 20th International Conference on High Performance Computing and Communications.Piscataway: IEEE Press, 2018: 329-334.
    [13]
    TONG W, ZHEN H, WEI W, et al.Early-stage internet traffic identification based on packet payload size[J].Journal of Southeast University(English Edition), 2014, 30(3):289-295.
    [14]
    范竣翔, 李琦, 朱亚杰, 等.基于RNN的空气污染时空预报模型研究[J].测绘科学, 2017, 42(7):76-83.

    FAN J X, LI Q, ZHU Y J, et al.A spatio-temporal prediction framework for air pollution based on deep RNN[J].Science of Surveying and Mapping, 2017, 42(7):76-83(in Chinese).
    [15]
    GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10):2222-2232.
    [16]
    DONAHUE J, HENDRICKS L A, ROHRBACH M, et al.Long-term recurrent convolutional networks for visual recognition and description[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):677-691.
    [17]
    LIU J, SHAHROUDY A, XU D, et al.Spatio-temporal LSTM with trust gates for 3D human action recognition[C]//European Conference on Computer Visio.Berlin: Springer, 2016: 816-833.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(852) PDF downloads(294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return