Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
LIU Buhua, DING Dan, YANG Liuet al. Channel compensation and signal detection of OFDM based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1363-1370. doi: 10.13700/j.bh.1001-5965.2019.0456(in Chinese)
Citation: LIU Buhua, DING Dan, YANG Liuet al. Channel compensation and signal detection of OFDM based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1363-1370. doi: 10.13700/j.bh.1001-5965.2019.0456(in Chinese)

Channel compensation and signal detection of OFDM based on neural network

doi: 10.13700/j.bh.1001-5965.2019.0456
Funds:

National High-tech Research and Development Program of China 2015AA7026085

More Information
  • Corresponding author: DING Dan, E-mail:ddnjr@163.com
  • Received Date: 26 Aug 2019
  • Accepted Date: 21 Feb 2020
  • Publish Date: 20 Jul 2020
  • A method for Orthogonal Frequency Division Multiplexing (OFDM) channel compensation and signal detection based on neural network is proposed for the complex channel conditions of nonlinear distortion and multi-path effects. First, the receiver uses the Least Squares (LS) and Zero Forcing (ZF) algorithm to preprocess the data, and then the processed data are input to neural network with only one fully connected layer for further channel compensation and signal detection, and finally the data flow is recovered. The simulation results show that, without Input Back-Off (IBO), the Bit Error Rate (BER) performance of the proposed method is two orders of magnitude higher than that of LS algorithm, and one order of magnitude higher than that of Linear Minimum Mean Square Error (LMMSE) and Minimum Mean Square Error (MMSE); with IBO, the proposed method can avoid at least 4 dB power loss under LS channel estimation and at least 2 dB power loss under LMMSE and MMSE channel estimation. To some extent, this paper verifies that the new network structure of machine learning combined with prior knowledge of communication can improve the accuracy of data transmission.

     

  • loading
  • [1]
    FANG X, XU Y C, CHEN Z Y, et al.Time-domain least square channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems[J].Journal of Lightwave Technology, 2015, 34(3):891-900.
    [2]
    WANG J, WEN O Y, LI S Q.Soft-output MMSE MIMO detector under ML channel estimation and channel correlation[J].IEEE Signal Processing Letters, 2009, 16(8):667-670.
    [3]
    NOH M, LEE Y, PARK H.Low complexity LMMSE channel estimation for OFDM[J].IEE Proceedings-Communications, 2006, 153(5):645-650.
    [4]
    YE H, LI G Y, JUANG B H.Power of deep learning for channel estimation and signal detection in OFDM systems[J].IEEE Wireless Communications Letters, 2017, 7(1):114-117.
    [5]
    NEUMANN D, WIESE T, UTSCHICK W.Learning the MMSE channel estimator[J].IEEE Transactions on Signal Processing, 2018, 66(11):2905-2917.
    [6]
    SAMUEL N, DISKIN T, WIESEL A.Deep MIMO detection[C]//IEEE International Workshop on Signal Processing Advances in Wireless Communications.Piscataway: IEEE Press, 2017: 1-5.
    [7]
    HE H T, WEN C K, JIN S, et al.A model-driven deep learning network for MIMO detection[C]//The 6th IEEE Global Conference on Signal and Information Processing.Piscataway, IEEE Press, 2018: 584-588.
    [8]
    NACHMANI E, BEERY Y, BURSHTEIN D.Learning to decode linear codes using deep learning[C]//2016 54th Annual Allerton Conference on Communication, Control, and Computing.Piscataway: IEEE Press, 2016: 341-346.
    [9]
    NACHMANI E, MARCIANO E, LUGOSCH L, et al.Deep learning methods for improved decoding of linear codes[J].IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):119-131.
    [10]
    GRUBER T, CAMMERER S, HOYDIS J, et al. On deep learning-based channel decoding[C]//201751st Annual Conference on Information Sciences and Systems(CISS).Piscataway: IEEE Press, 2017: 1-6.
    [11]
    FEHSKE A, GAEDDERT J, REED J.A new approach to signal classification using spectral correlation and neural networks[C]//1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks.Piscataway: IEEE Press, 2005: 144-150.
    [12]
    PENG S, JIANG H, WANG H, et al.Modulation classification based on signal constellation diagrams and deep learning[J].IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3):718-727.
    [13]
    O-SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks. Berlin: Springer, 2016: 213-226.
    [14]
    廖勇, 花远肖, 姚海梅.基于深度学习的OFDM信道估计[J].重庆邮电大学学报, 2019, 31(3):348-353. http://www.cnki.com.cn/Article/CJFDTotal-CASH201903009.htm

    LIAO Y, HUA Y X, YAO H M.Channel estimation based on deep learning for OFDM systems[J].Journal of Chongqing University of Posts and Telecommunications, 2019, 31(3):348-353(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CASH201903009.htm
    [15]
    SPENCER Q H, SWINDLEHURST A L, HAARDT M.Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J].IEEE Transactions on Signal Processing, 2004, 52(2):461-471.
    [16]
    SALEH A A M.Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers[J].IEEE Transactions on Communications, 1981, 29(11):1715-1720.
    [17]
    WANG T, WEN C, WANG H, et al.Deep learning for wireless physical layer:Opportunities and challenges[J].China Communications, 2017, 14(11):92-111.
    [18]
    张静, 金石, 温朝凯, 等.基于人工智能的无线传输技术最新研究进展[J].电信科学, 2018(8):46-55.

    ZHANG J, JIN S, WEN C K, et al.An overview of wireless transmission technology utilizing artificial intelligence[J].Telecommunications Science, 2018(8):46-55(in Chinese).
    [19]
    CHO Y S, KIM J, YANG W Y.MIMO-OFDM wireless communication with MATLAB[M].Hoboken:John Wiley & Sons, 2010:25-35.
    [20]
    JIANG P W, WANG T Q, HAN B, et al. Artificial intelligence-aided OFDM receiver: Design and experimental results[EB/OL].(2018-12-17)[2019-08-11].http: //arxiv.org/abs/1812.06638.
    [21]
    HAN D S, HWANG T.An adaptive pre-distorter for the compensation of HPA nonlinearity[J].IEEE Transactions on Broadcasting, 2000, 6(2):152-157.
    [22]
    杨霖, 宋坤.OFDM系统中基于压缩感知恢复由限幅和HPA产生的非线性失真研究[J].电子学报, 2018, 46(5):1078-1083.

    YANG L, SONG K.Research on recovery of clipping and HPA nonlinear distortion based on compressive sensing in OFDM systems[J]. Acta Electronica Sinica, 2018, 46(5):1078-1083(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(1161) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return