Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
LI Shuangming, GUAN Xin, ZHAO Jing, et al. A methodology for target recognition with parameters of interval cross type[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1307-1316. doi: 10.13700/j.bh.1001-5965.2019.0442(in Chinese)
Citation: LI Shuangming, GUAN Xin, ZHAO Jing, et al. A methodology for target recognition with parameters of interval cross type[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1307-1316. doi: 10.13700/j.bh.1001-5965.2019.0442(in Chinese)

A methodology for target recognition with parameters of interval cross type

doi: 10.13700/j.bh.1001-5965.2019.0442
Funds:

National Defense Science and Technology Excellence Youth Talent Fund 2017-JCJQ-ZQ-003

Taishan Scholar Engineer-ing Special Fund ts201712072

More Information
  • Corresponding author: GUAN Xin, E-mail:gxtongwin@163.com
  • Received Date: 16 Aug 2019
  • Accepted Date: 15 Dec 2019
  • Publish Date: 20 Jul 2020
  • Aimed at the problem of target recognition with parameters of interval cross type, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method for target recognition based on intuitionistic fuzzy set and cloud model is proposed in this paper. The target database model including individual class and cross class is constructed. According to the multi-step estimation algorithm for cloud model, the certainty degree of an unknown target over a known target class is obtained, and the transformation algorithm from certainty degree to membership and non-membership degree is proposed. The dynamic attribute weight is calculated based on intuitionistic fuzzy entropy. The TOPSIS recognition decision method of defuzzification distance measure is formed. The simulation results indicate that the proposed method has a high accuracy rate for target recognition with parameters of interval cross type and thus has a certain practical application value, when applied to radar emitter recognition.

     

  • loading
  • [1]
    LIU S K, YAN X P, LI P, et al.Radar emitter recognition based on sift position and scale features[J].IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs, 2018, 65(12):2062-2066. doi: 10.1109/TCSII.2018.2819666
    [2]
    周志文, 黄高明, 高俊.基于协作表示Boosting的辐射源多传感器融合识别[J].控制与决策, 2017, 32(8):1481-1485.

    ZHOU Z W, HUANG G M, GAO J.Emitter identification of multi-sensor fusion based on collaborative representation and Boosting[J].Control and Decision, 2017, 32(8):1481-1485(in Chinese).
    [3]
    刘飞, 何明浩, 韩俊.雷达辐射源信号识别特征参数集的构建方法[J].系统工程与电子技术, 2018, 40(8):1729-1735.

    LIU F, HE M H, HAN J.Method of constructing characteristic parameter set used at radar emitter signal recognition[J].Systems Engineering and Electronics, 2018, 40(8):1729-1735(in Chinese).
    [4]
    关欣, 郭强, 张政超, 等.基于逆云模型的雷达辐射源识别方法[J].电子科技大学学报, 2012, 41(5):663-667. doi: 10.3969/j.issn.1001-0548.2012.05.004

    GUAN X, GUO Q, ZHANG Z C, et al.Novel method for emitter recognition based on backward cloud model[J].Journal of University of Electronic Science and Technology of China, 2012, 41(5):663-667(in Chinese). doi: 10.3969/j.issn.1001-0548.2012.05.004
    [5]
    WANG H, GUO L L, LIN Y.Recognition method of software defined radio signal based on evidence theory and interval grey relation[C]//2017 IEEE International Conference on Software Quality, Reliability and Security.Piscataway: IEEE Press, 2017: 233-237.
    [6]
    万树平.不确定多传感器目标识别的区间相离度法[J].控制与决策, 2009, 24(9):1306-1309.

    WAN S P.Method of interval deviation degree for uncertain multi-sensor target recognition[J].Control and Decision, 2009, 2009, 24(9): 1306-1309(in Chinese).
    [7]
    关欣, 孙贵东, 郭强, 等.基于区间数和证据理论的雷达辐射源参数识别[J].系统工程与电子技术, 2014, 36(7):1269-1274.

    GUAN X, SUN G D, GUO Q, et al.Radar emitter parameter recognition based on interval number and evidence theory[J].Systems Engineering and Electronics, 2014, 36(7):1269-1274(in Chinese).
    [8]
    LIU H J, LIU Z, JIANG W L, et al.Approach based on combination of vector neural networks for emitter identification[J]IET Signal Process, 2010, 4(2):1371148.
    [9]
    郭强, 何友.基于云模型的DSm证据建模及雷达辐射源识别方法[J].电子与信息学报, 2015, 38(7):1779-1785.

    GUO Q, HE Y.DSm evidence modeling and radar emitter fusion recognition method based on cloud model[J].Journal of Electronics & Information Technology, 2015, 37(8):1779-1785(in Chinese).
    [10]
    刘海军, 柳征, 姜文利, 等.一种基于云模型的辐射源识别方法[J].电子与信息学报, 2009, 31(9):2079-2083.

    LIU H J, LIU Z, JIANG W L, et al.A method for emitter recognition based on cloud model[J].Journal of Electronics & Information Technology, 2009, 31(9):2079-2083(in Chinese).
    [11]
    ZADEH L A.Fuzzy sets[J].Information and Control, 1965, 8(3):338-353. doi: 10.1016/S0019-9958(65)90241-X
    [12]
    ZADEH L A. The concept of a linguistic variable and its applications to approximate reasoning-Ⅰ[J].Information Sciences, 1975, 8(3):199-249. doi: 10.1016/0020-0255(75)90036-5
    [13]
    ZADEH L A. The concept of a linguistic variable and its applictions to approximate reasoning-Ⅱ[J].Information Sciences, 1975, 8(4):301-357. doi: 10.1016/0020-0255(75)90046-8
    [14]
    ZADEH L A.The concept of a linguistic variable and its applications to approximate reasoning-Ⅲ[J].Information Sciences, 1975, 9(1):43-80. doi: 10.1016-0020-0255(75)90017-1/
    [15]
    YAGER R R.On the theory of bags[J].International Journal of General Systems, 1986, 13(1):23-37. doi: 10.1080/03081078608934952
    [16]
    ATANASSOV K T.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 1986, 20(1):87-96. doi: 10.1016/S0165-0114(86)80034-3
    [17]
    CHEN S H, CHEN S M, LAN T H.A novel similarity measure between intuitionistic fuzzy sets based on the centroid points of transformed fuzzy numbers with applications to pattern recognition[J].Information Sciences, 2016, 343-344:15-40. doi: 10.1016/j.ins.2016.01.040
    [18]
    CHEN S M, CHANG C H.A novel similarity measure between Atanassov's intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition[J].Information Sciences, 2015, 291:96-114. doi: 10.1016/j.ins.2014.07.033
    [19]
    CHAIRA T.A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images[J].Applied Soft Computing, 2011, 11(2):1711-1717. doi: 10.1016/j.asoc.2010.05.005
    [20]
    WANG Z, XU Z S, LIU S H, et al.A netting clustering analysis method under intuitionistic fuzzy environment[J].Applied Soft Computing, 2011, 11(8):5558-5564. doi: 10.1016/j.asoc.2011.05.004
    [21]
    KUO R J, LIN T C, ZULVIA F E, et al.A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis[J].Applied Soft Computing, 2018, 67:299-308. doi: 10.1016/j.asoc.2018.02.039
    [22]
    WANG G Y, XU C L, LI D Y.Generic normal cloud model[J].Information Sciences, 2014, 280:1-15. doi: 10.1016/j.ins.2014.04.051
    [23]
    邢清华, 刘付显.直觉模糊集隶属度与非隶属度函数的确定方法[J].控制与决策, 2009, 24(3):393-397.

    XING Q H, LIU F X.Method of determining membership and nonmembership function in intuitionistic fuzzy sets[J].Contral and Pecision, 2009, 24(3):339-397(in Chinese).
    [24]
    SONG Y F, WANG X D, WU W H, et al.Uncertainty measure for Atanassov's intuitionistic fuzzy sets[J].Applied Intelligence, 2017, 47(4):757-774.
    [25]
    GERSTENKORN T, MANKO J.Correlation of intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 1991, 44(1):39-43. doi: 10.1016/0165-0114(91)90031-K
    [26]
    孙贵东.基于多粒度模糊信息的融合识别方法研究[D].烟台: 海军航空大学, 2018: 30-50.

    SUN G D.Fusion recognition techniques based on multi-granularity fuzzy information[D].Yantai: Naval Aviation University, 2018: 30-50(in Chinese).
    [27]
    LUO X, LI W M, ZHAO W.Intuitive distance for intuitionistic fuzzy sets with applications in pattern recognition[J].Applied Intelligence, 2018, 48(9):2792-2808. doi: 10.1007/s10489-017-1091-0
    [28]
    YE J.Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment[J].European Journal of Operational Research, 2010, 205(1):202-204.
    [29]
    XU Z H, YAGER R R.Some geometric aggregation operators based on intuitionistic fuzzy sets[J].International Journal of General Systems, 2006, 35(4):417-433. doi: 10.1080/03081070600574353
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views(874) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return