Volume 46 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
ZHU Zhuangsheng, ZHANG Meng. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172(in Chinese)
Citation: ZHU Zhuangsheng, ZHANG Meng. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172(in Chinese)

Air disturbance affecting wing deflection deformation modeling for InSAR

doi: 10.13700/j.bh.1001-5965.2019.0172
Funds:

National Natural Science Foundation of China 61873019

National Natural Science Foundation of China 61573040

National Natural Science Foundation of China 61421063

National Natural Science Foundation of China 61661136007

National Natural Science Foundation of China 61703021

National Natural Science Foundation of China 61722103

National Natural Science Foundation of China 61571030

National Natural Science Foundation of China 61473020

Aeronautical Science Foundation of China 20170551004

More Information
  • Corresponding author: ZHU Zhuangsheng, E-mail:zszhu@cqjj8.com
  • Received Date: 22 Apr 2019
  • Accepted Date: 19 Jul 2019
  • Publish Date: 20 Jan 2020
  • For the problem of multi-node InSAR wing deflection deformation error, a method based on mechanism modeling integrated parameter identification is proposed for the layered modeling of wing deflection deformation induced by air disturbance. First, this model takes atmospheric turbulence as the main air disturbance in the InSAR imaging working section, and based on Dryden model, it is analyzed that the working height and speed of the aircraft are the main factors affecting atmospheric turbulence. Therefore, the modeling of wing deformation affected by atmospheric turbulence is transformed to the layered modeling of wing deformation under different working conditions (height change, velocity change). Second, the wing deformation mechanism model is established based on the combination of the aerodynamic theory and the cantilever beam deformation theory. The parameters of the model are identified by the experimental data obtained from the simulation analysis of computational fluid dynamics and computational structural mechanics. Finally, the simulation experiments show that, calculated by both the proposed method and the mature modal superposition principle, the lateral displacement error is better than 0.6 mm (relative error 0.3%) and the axial displacement error is better than 0.015 mm (relative error 0.2%). In addition, based on the distributed fiber Bragg grating measurement system of wing structure built in the laboratory and the principle of modal superposition, the deformation is calculated to verify the proposed method, the lateral displacement error is better than 0.3 mm (relative error 1%) and the axial relative error is better than 0.06 mm (relative error 3%).

     

  • loading
  • [1]
    潘舟浩, 刘波, 张清娟, 等.三基线毫米波InSAR的相位解缠及高程反演[J].红外与毫米波学报, 2013, 32(5):474-480.

    PAN Z H, LIU B, ZHANG Q J, et al.Millimeter-wave InSAR phase unwrapping and DEM reconstruction based on three-baseline[J].Journal of Infrared and Millimeter Waves, 2013, 32(5):474-480(in Chinese).
    [2]
    XU W, CHANG E C, KWOH L K, et al.Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 1994: 4986460.
    [3]
    ZHANG K, WU D, WANG S, et al.A new method for estimating unambiguous phase observations of re-identified coherent targets for multi-baseline InSAR techniques[J].Remote Sensing Letters, 2017, 8(12):1172-1179. doi: 10.1080/2150704X.2017.1353223
    [4]
    WANG B, DENG Z H, LIU C, et al.Estimation of information sharing error by dynamic deformation between inertial navigation systems[J].IEEE Transactions on Industrial Electronics, 2014, 61(4):2015-2023. doi: 10.1109/TIE.2013.2271595
    [5]
    DAI H D, LUA J H, GUO W.IMU based deformation estimation about the deck of large ship[J].Optik, 2016, 127(7):3535-3540. doi: 10.1016/j.ijleo.2015.12.135
    [6]
    MAJEED S, FANG J.Performance improvement of angular rate matching shipboard transfer alignment[C]//International Conference on Electronic Measurement & Instruments.Piscataway, NJ: IEEE Press, 2009: 10962531.
    [7]
    解春明, 赵剡, 杨传春.传递对准滤波中机翼变形噪声的在线补偿算法[J].系统工程与电子技术, 2011, 33(2):370-375. doi: 10.3969/j.issn.1001-506X.2011.02.28

    XIE C M, ZHAO Y, YANG C C.Online compensation algorithm of wing flexure noise in transfer alignment filtering[J].Systems Engineering and Electronics, 2011, 33(2):370-375(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.02.28
    [8]
    KAIN J E, CLOUTIER J R.Rapid transfer alignment for tactical weapon applications: AIAA-89-3581[R].Reston: AIAA, 1989.
    [9]
    WENDEL J, METZGER J, TROMMER G F.Rapid transfer alignment in the presence of time correlated measurement and system noise: AIAA-2004-4778[R].Reston: AIAA, 2004.
    [10]
    DUREN R M, LIEBE C C.The SRTM sub-arcsecond metrology camera[C]//IEEE Aerospace Conference.Piscataway, NJ: IEEE Press, 2001: 2037-2046.
    [11]
    RICHARDS L, PARKER A R, KO W L, et al.Fiber optic wing shape sensing on NASA's Ikhana UAV[R]: Washington, D.C.: NASA, 2008: 5-13.
    [12]
    孙东科, 林家浩.利用CFD计算技术进行机翼模型气动特性分析[J].航空计算技术, 2010, 40(1):21-24. doi: 10.3969/j.issn.1671-654X.2010.01.006

    SUN D K, LIN J H.Aerodynamic analysis of NACA0012 airfoil model using CFD[J].Aeronautical Computing Technique, 2010, 40(1):21-24(in Chinese). doi: 10.3969/j.issn.1671-654X.2010.01.006
    [13]
    王云, 徐江锋.基于预变形设计的柔性机翼气动性能分析[J].南昌航空大学学报(自然科学版), 2013, 27(2):47-51. doi: 10.3969/j.issn.1001-4926.2013.02.008

    WANG Y, XU J F.Analysis of aerodynamics characteristic of flexible wing on pre-deformation[J].Joumal of Nanchang Hangkong University(Natural Sciences), 2013, 27(2):47-51(in Chinese). doi: 10.3969/j.issn.1001-4926.2013.02.008
    [14]
    陈志敏, 徐敏, 陈士橹.跨声速静气动弹性结构响应分析[J].空军工程大学学报(自然科学版), 2005, 6(1):1-4. doi: 10.3969/j.issn.1009-3516.2005.01.001

    CHEN Z M, XU M, CHEN S L.An analysis of structure response for transonic static aeroelasticity[J].Journal of Air Force Engineering University(Natrnal Science Edition), 2005, 6(1):1-4(in Chinese). doi: 10.3969/j.issn.1009-3516.2005.01.001
    [15]
    张华, 马东立, 马铁林.弹性变形对柔性机翼气动特性影响分析[J].北京亚洲成人在线一二三四五六区学报, 2008, 34(5):487-490. http://bhxb.cqjj8.com/CN/Y2008/V34/I05/487

    ZHANG H, MA D L, MA T L.Analysis of aerodynamics characteristic of flexible wing caused by deflection[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):487-490(in Chinese). http://bhxb.cqjj8.com/CN/Y2008/V34/I05/487
    [16]
    GONZALEZ J H, BACHMANN M, SCHEIBER R, et al.TanDEM-X DEM calibration and processing experiments with E-SAR[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 2008: 10460434.
    [17]
    LOU Y.Review of the NASA/JPL airborne synthetic aperture radar system[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 2002: 1702-1704.
    [18]
    SØREN N M, MARTIN J M, ZEBKER H A.Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system[J].IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):383-391. doi: 10.1109/TGRS.1995.8746019
    [19]
    李道京.毫米波干涉合成孔径雷达[J].高科技与产业化, 2013, 9(11):40-43.

    LI D J.Millimeter wave interference synthetic aperture radar[J].High-Technology & Industrialization, 2013, 9(11):40-43(in Chinese).
    [20]
    黄刚, 刘力荣, 史雪静, 等.国产机载微型InSAR系统的DEM精度分析[J].测绘科学, 2017, 42(8):128-133.

    HUANG G, LIU L R, SHI X J, et al.Accuracy analysis of DEM based on domestic airborne mini-InSAR system[J].Science of Surveying and Mapping, 2017, 42(8):128-133(in Chinese).
    [21]
    朱庄生, 郭韬.分布式POS传递对准对InSAR干涉测量影响的分析[J].中国惯性技术学报, 2014, 22(4):432-438.

    ZHU Z S, GUO T.Effect of distributed POS transfer alignment on InSAR interferometic measurement[J].Journal of Chinese Inertial Technology, 2014, 22(4):432-438(in Chinese).
    [22]
    中国人民解放军总装备部.中国参考大气(地面~80 km): GJB 5601-2006[S].北京: 总装备部军标出版发行部, 2006.

    PLA General Armament Department.China reference atmosphere(ground~80 km): GJB 5601-2006[S].Beijing: General Armament Department Military Standard Publishing Department, 2006(in Chinese).
    [23]
    胡明宝, 肖文建.风廓线雷达中风切变分析方法的初步研究[J].气象科学, 2010, 30(4):510-515. doi: 10.3969/j.issn.1009-0827.2010.04.012

    HU M B, XIAO W J.The preliminary study on analysis method of wind shear using wind profiler[J].Journal of the Meteorological Sciences, 2010, 30(4):510-515(in Chinese). doi: 10.3969/j.issn.1009-0827.2010.04.012
    [24]
    张序, 刘岷江.飞行中风切变的判断及处置[J].航空安全, 2008(6):62-64.

    ZHANG X, LIU M J.Judgement and handlig of windshear during flight[J].Safety & Security, 2008(6):62-64(in Chinese).
    [25]
    陈楠.某大型客机受突风载荷作用产生的非定常气动力计算[D].南京: 南京亚洲成人在线一二三四五六区, 2013.

    CHEN N.The calculation of unsteady aerodynamics effected by gusts upon an airliner[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [26]
    ETKIN B.Turbulent wind and its effect on flight[J].Journal of Aircraft, 2012, 18(5):327-345. doi: 10.2514-3.48243/
    [27]
    赵震炎, 肖业伦, 施毅坚.Dryden大气紊流模型的数字仿真技术[J].航空学报, 1986, 7(5):433-443. doi: 10.3321/j.issn:1000-6893.1986.05.003

    ZHAO Z Y, XIAO Y L, SHI Y J.A digital simulation for Dryden atmospheric turbulence model[J].Acta Aeronautica et Astronautica Sinica, 1986, 7(5):433-443(in Chinese). doi: 10.3321/j.issn:1000-6893.1986.05.003
    [28]
    高静, 洪冠新, 梁灶清.Von Karman模型三维大气紊流仿真理论与方法[J].北京亚洲成人在线一二三四五六区学报, 2012, 38(6):736-740. http://bhxb.cqjj8.com/CN/Y2012/V38/I6/736

    GAO J, HONG G X, LIANG Z Q.Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):736-740(in Chinese). http://bhxb.cqjj8.com/CN/Y2012/V38/I6/736
    [29]
    TATOM F B, SMITH S R, FICHTL G H.Simulation of atmospheric turbulent gusts and gust gradients[J].Journal of Aircraft, 1981, 19(4):264-271. doi: 10.2514-3.57388/
    [30]
    高振兴.复杂大气扰动下大型飞机飞行实时仿真建模研究[D].南京: 南京亚洲成人在线一二三四五六区, 2009.

    GAO Z X.Research on real-time flight simulation of large aircraft in complex atmospheric disturbance[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [31]
    詹斌.石墨烯增强纳米复合材料变形机理与力学建模研究[D]: 杭州: 浙江大学, 2018.

    ZHAN B.On deformation mechanism and modeling of graphene-reinforced nanocomposites[D].Hangzhou: Zhejiang University, 2018(in Chinese).
    [32]
    ANGERER B T, HINTZ C, SCHRODER D.Online identification of a nonlinear mechatronic system[J].Control Engineering Practice, 2004, 12(11):1465-1478. doi: 10.1016/j.conengprac.2004.03.005
    [33]
    SOL H, HUA H, VISSCHER J D, et al.A mixed numerical/experimental technique for the nondestructive identification of the stiffness properties of fibre reinforced composite materials[J].NDT & E International, 1997, 30(2):85-91.
    [34]
    关永亮.复合材料无人机结构和飞行动力学关键技术研究[D].北京: 中国科学院大学, 2017.

    GUAN Y L.Research on key tecnologies of structural and flight dynamics for a composite unmanned aerial vehicle[D].Beijing: University of Chinese Academy of Sciences, 2017(in Chinese).
    [35]
    张立.机翼结构的多约束拓扑优化方法及其应用研究[D].沈阳: 沈阳亚洲成人在线一二三四五六区, 2017.

    ZHANG L.Multi constrainst optimization method and application research of wing structure[D].Shenyang: Shenyang Aerospace University, 2017(in Chinese).
    [36]
    刘鸿文.材料力学[M].4版.北京:高等教育出版社, 2004:188-190.

    LIU H W.Mechanics of materials[M].4th ed.Beijing:Higher Education Press, 2004:188-190(in Chinese).
    [37]
    史志伟, 倪芳原, 陈永亮.基于两步线性回归的状态空间模型建立与验证[J].空气动力学学报, 2013, 31(6):699-703.

    SHI Z W, NI F Y, CHEN Y L.The state-space models based on two-step linear regression method[J].Acta Aerodynamica Sinica, 2013, 31(6):699-703(in Chinese).
    [38]
    KIM H I, KANG L H, HAN J H.Shape estimation with distributed fiber Bragg grating sensors for rotating structures[J].Smart Materials & Structures, 2011, 20(3):035011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(11)

    Article Metrics

    Article views(933) PDF downloads(240) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return